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a b s t r a c t

Inflationary cosmology has been widely accepted due to its successful predictions: for a “generic” initial
state, inflation produces a homogeneous, flat, bubble with an appropriate spectrum of density
perturbations. However, the discovery that inflation is “generically eternal,” leading to a vast multiverse
of inflationary bubbles with different low-energy physics, threatens to undermine this account. There is a
“predictability crisis” in eternal inflation, because extracting predictions apparently requires a well-
defined measure over the multiverse. This has led to discussions of anthropic predictions based on a
measure over the multiverse, and an assumption that we are typical observers. I will give a pessimistic
assessment of attempts to make predictions in this sense, emphasizing in particular problems that arise
even if a unique measure can be found.
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1. Introduction

Contemporary presentations of the history of the universe treat
inflationary cosmology as a well-entrenched part of the standard
hot big bang model of cosmology. According to inflation, the early
universe underwent a brief phase of exponential expansion. This
growth spurt sets the stage for subsequent big bang evolution,
yielding a large, flat region with the right balance of overall
uniformity and slight wrinkles needed to seed structure formation.
From an observational point of view, the basic account offered by
inflation has held up to scrutiny through three decades of ever
more precise observations of the cosmic background radiation
(CBR) and other aspects of the universe. Yet many of the theorists
working on inflation assert that it leads to a more radical account
of the global structure of the universe. The basic mechanism
driving inflationary expansion naturally produces, on this view, a
baroque global structure fitting for a Borgesian fiction. Inflationary
expansion continues until arbitrarily late times in some regions,
leading to a complex global structure at large scales – a “multi-
verse,” with “pocket universes” continually forming as inflation
comes to a halt locally, while continuing in other regions. The
process of forming these pocket universes is expected to lead to
variation in the local, low-energy physics relevant to what tran-
spires in each pocket. Rather than treating inflationary expansion
as simply modifying the earliest phase of evolution in the big bang
model, “eternal inflation,” as this view is known, predicts that the

universe has an intricate worlds-within-worlds structure. Many
aspects of what was once taken as fundamental physics are
demoted, on this view, to contingent, parochial properties of our
pocket universe.

How can we tell whether we inhabit the extravagant multiverse of
eternal inflation? As Guth (2007) puts it, “In an eternally inflating
universe, anything that can happenwill happen; in fact, it will happen
an infinite number of times.” How can we test such a theory, which
seems far too promiscuous to have the virtue of clear empirical
content? Advocates of eternal inflation have argued that despite this
embarrassment of riches, the theory does make predictions regarding
what a “typical observer” in the multiverse observes for the value of,
for example, a given fundamental physical constant αi.1 Making such a
prediction requires two distinct ingredients: (1) a probability distribu-
tion PiðαiÞ specifying the variation of αi across the ensemble of pocket
universes and (2) a treatment of the selection effect imposed by
restricting consideration to pocket universes with observers and then
choosing a “typical” observer. An empirical case for eternal inflation
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1 I will follow the common practice of calling these “constants,” although
“parameters” may be more appropriate. I am treating “fundamental constants”
broadly, to include those appearing in the Standard Model of particle physics and in
cosmological models: dimensionless coupling constants characterizing the strength
of the fundamental forces, mass scales, scales related to the vacuum and to phase
transitions, and cosmological parameters such as the baryon-to-photon ratio.
Hence the original predictions of inflation can be treated as predictions of
fundamental constants such as the amplitude of the density perturbations in the
early universe, initial value of spatial curvature, and so on. (I will call these
cosmological parameters rather than constants to avoid confusion with the
cosmological constant, Λ.)
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could then be based on successful predictions of this kind, which I will
call “anthropic predictions” (because of the second ingredient), for a
number of fundamental constants. The most famous anthropic pre-
diction regards the value of the cosmological constant Λ (discussed in
Section 3).

Yet obstacles have frustrated efforts to carry out anthropic
predictions. Vanchurin, Vilenkin, and Winitzki (2000) describe the
situation as a “predictability crisis” (the source of my title), a
phrase which is still apt a decade later. Further reflection on both
ingredients readily reveals the sources of the crisis.

Regarding (1), assigning a probability distribution to an infinite
ensemble of pocket universes leads to difficulties well-illustrated
in a simple example. What is the probability that a randomly
chosen positive integer is an even number? Since the set N is
infinite, a measure that assigns to each subset of N the number of
elements of that subset is not sufficient to fix this probability. The
intuitive answer (12 ) can be obtained by taking the limit of the
probability for finite sequences of the form Sn ¼ f1;2;3;…;ng as
n-1. Choosing other nested sequences of subsets of N, however,
leads to different answers, and there is nothing “wrong” with
other choices. Analogously, making predictions in eternal inflation
requires some choice of an additional structure to define prob-
abilities, such as the distribution PiðαiÞ, over an infinite ensemble.
What is the appropriate additional structure, and on what grounds
can it be justified? This is known as the “measure problem.”

The second ingredient (2) is no less problematic. The assump-
tion of “typicality” is a form of the principle of indifference: we
should treat all possible observers as equally probable. Just as with
other applications of the principle of indifference, this assignment
of equal probabilities implicitly singles out one preferred reference
class. Probabilities that are uniform with respect to one reference
class will, in general, not be uniform with respect to another class.
What, then, justifies a particular treatment of a “typical observer”?

In response to the “predictability crisis,” physicists have sought a
well-motivated measure that yields finite, reasonable anthropic pre-
dictions. There is little dispute that finding such a measure is a difficult
technical problem, but optimists regard it as one that may be solved
based on further insights into quantum gravity. Candidate measures
motivated by hints from quantum gravity are assessed “phenomen-
ologically” by calculating anthropic predictions for some parameters.
Below I offer a brief overview of these discussions in Section 4,
intended as a primer for philosophers. I then challenge the idea that a
solution of the measure problem in this sense would be sufficient to
ensure that anthropic predictions can be used to justify cosmological
theories. In doing so, I aim to give a sharp formulation of skepticism
regarding multiverse theories similar in spirit to that expressed by
many others (in particular, Ellis and Smolin). In Section 5, I argue that
two ways of justifying probabilities once a measure has been found
both fail. Furthermore, anthropic predictions lack the power to
discriminate among competing theories, and are in this regard quite
different than other scientific predictions.2 Section 6 considers the
evidential value of anthropic predictions. Rather than providing
detailed tests of a specific multiverse theory, I argue that these
predictions are only sufficient to establish the compatibility between
the general idea of a multiverse and observations. Compatibility may
promote a sense of progress if all other proposals fail to clear even
this low bar, but does not provide compelling positive evidence.
In Section 7, I briefly consider alternative arguments in favor of EI
that may take the place of anthropic predictions, before arguing in

Section 8 that the style of reasoning adopted in EI undermines the
conventional case in favor of inflation.

2. From inflation to eternal inflation

The central idea of inflationary cosmology is that the early universe
underwent a transient phase of accelerated expansion. There are a
number of different proposals regarding the physical source of this
inflationary phase, but one of the simplest involves a scalar fieldϕ (the
“inflaton” field) displaced from the true minima of its effective
potential VðϕÞ. If the field is approximately homogeneous and in a
false vacuum state, the inflaton field effectively mimics a cosmological
constant term.3 This term in isolation leads to exponential expansion
RðtÞpeξt , where ξ2 ¼ ð8πG=3ÞVðϕÞ. By way of contrast, “ordinary”
matter and radiation decelerates cosmic expansion, €Ro0, reflecting
the fact that gravity is a force of attraction. Accelerating expansion
requires an unusual type of matter with, roughly speaking, negative
energy.4 In addition, the energy density of the false vacuum state
remains constant during expansion rather than diluting away like
other types of matter. This suggests the “cosmic no-hair conjecture”:
the vacuum energy should come to dominate the cosmic evolution as
everything else dilutes away, regardless of the initial mix of fields
present at the onset of inflation.

The addition of a transient inflationary phase apparently resolves
two puzzles regarding the initial conditions of the standard cosmolo-
gical model. For a Friedman–Lemaître–Robertson–Walker (FLRW)
model with €Ro0, the particle horizon at recombination is much,
much smaller than the scales at which the CBR is observed to have
uniform temperature.5 This is extremely puzzling if one expects the
physical properties in causally disjoint regions (those separated by a
distance greater than the particle horizon) to be uncorrelated.
A second puzzle regards the initial value of the curvature. The flat
FLRW model, with Ω¼ 1, is an unstable fixed point under dynamical
evolution.6 This aspect of the dynamics makes it extremely puzzling to
find that the observed universe is still close to a flat model, apparently
requiring an extraordinarily finely tuned choice of ΩðtiÞ as an initial
condition.

Both puzzles reflect the fact that €Ro0 in the FLRW models, but
this is reversed during an inflationary phase. For N e-foldings of
expansion the horizon distance dh is multiplied by eN ; with N 460
the horizon distance, while still finite, encompasses the observed
universe. Second, Ω is driven toward 1 during inflation.7 An infla-
tionary stage long enough to solve the horizon problem drives a large
range of pre-inflationary values ofΩðtiÞ close enough to 1 by the end

2 Despite reservations, I will nonetheless follow the physics literature in calling
these predictions. My concern does not stem from the probabilistic nature of
anthropic predictions – any account of confirmation theory should be able to
handle confirmation by successful probabilistic predictions. Rather, the contrast
concerns how probative anthropic predictions can be regarding the details of the
theory being tested.

3 R(t) is the scale factor for the FLRW models, a function of the cosmic time t.
The stress-energy tensor for a scalar field is given by Tab ¼∇aϕ∇bϕ�
1
2gabg

cd∇c∇dϕ�gabVðϕÞ. If the derivative terms are negligible, Tab � �gabVðϕÞ.
4 More precisely, the strong energy condition (SEC) fails; this condition holds if

the stresses in matter are not so large as to produce negative energy densities.
Formally, SEC requires that Tabξ

aξbZ1
2TrðTabÞ for every unit timelike ξa; for a

perfect fluid, for example, this implies that ρþ3pZ0, where ρ is the energy
density and p is the pressure. Accelerating expansion requires violation of the SEC
on the assumption that general relativity holds, and that there is no large-scale net
rotation of matter (as in the FLRW models); it is also possible to modify the
gravitational theory.

5 The particle horizon is defined as the integral

d¼ Rðt0Þ
Z t0

te

dt
RðtÞ ð1Þ

in the limit te-0. This is a finite distance when €Ro0, corresponding to roughly 2○

of angular separation on the surface of last scattering.
6 The density parameter is defined as Ω≕ρ=ρc , where the critical density is

ρc ¼ ð3=8πÞðH2�Λ=3Þ, where H¼ _R=R is the Hubble parameter and Λ is the
cosmological constant. It follows from the FLRW dynamics that
jΩ�1j=ΩpR3γ�2ðtÞ. γ42=3 if the strong energy condition holds, and in that case
an initial value of Ω not equal to 1 is driven rapidly away from 1.

7 In the equation in footnote 6, γ ¼ 0 during inflation, driving Ω toward 1.
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of inflation to be compatible with observations. Rather than requiring
an initial state with glorious pre-established harmony, inflation makes
a wide variety of pre-inflationary initial states compatible with the
observed universe. The recognition of these consequences, by Guth
(1981) and others, and Guth's ensuing argument that inflationary
cosmology should be pursued because it leads to a theory that does
not require special initial conditions, have shaped the field since
that time.

Inflation would probably not have inspired so much interest
had it not also provided a compelling answer to a third puzzle.
Research on the formation of large scale structures in the 1970s led
to a hypothesis regarding what initial density perturbations would
be needed to produce the observed distribution of galaxies.
Harrison, Peebles, and Zel'dovich independently proposed that
the initial density perturbations should be small amplitude,
adiabatic, approximately scale invariant, and Gaussian. Although
this proposal was phenomenologically successful it was myster-
ious how such perturbations could be produced. Inflation provides
an elegant account of how these density perturbations arose: they
result from vacuum fluctuations of the inflaton field. During
inflation a given Fourier mode ϕk of the inflaton field scales with
the exponential expansion, whereas the Hubble parameter H is
approximately constant. As a given mode “exits the horizon” (i.e.,
when k=R becomes 4H) the equation governing its evolution
becomes like that of an over-damped oscillator. As a result the
mode is “frozen in” at a given fluctuation amplitude; after inflation
ends, the scaling behavior of the proper wavelength of the mode
compared to the Hubble parameter reverses and it eventually “re-
enters” the horizon (when k=R becomes oH). More importantly,
the account of structure formation has provided the main avenue
for bringing observational results to bear on inflation. Observa-
tions of temperature variations in the CBR have provided ongoing
tests of the details of inflation, and have ruled out competing
models of structure formation.

In brief outline, the early history of the universe according to
inflationary cosmology starts with a pre-inflationary patch in the
appropriate state to initiate inflation. If the inflaton field is
displaced from the minimum of the potential and homogeneous
in a region larger than the horizon scale, it will contribute an
effective Λ term to Einstein's field equations (EFEs) and trigger
inflationary expansion. Provided that the effective potential VðϕÞ is
sufficiently flat, as the inflaton field “rolls down” the potential, it
will continue to act as an effective Λ term, driving a stage of
exponential expansion. N 460 e-foldings suffice to solve the
horizon and flatness problems as described above, and the vacuum
fluctuations of ϕ are amplified to produce a spectrum of scale-
invariant density perturbations. Finally, since any pre-inflationary
matter and energy have been diluted during inflation, the universe
needs to be re-populated with matter and energy in a process
(misleadingly) called “re-heating.” This process results from the
inflaton field reaching the end of the “slow-roll” regime with a
field value ϕrh; for ϕoϕrh it oscillates around its true minimum
and decays into other fields. The spacelike hypersurface where the
field attains the value ϕrh is called the “re-heating” surface.
Inflation promises to yield an appropriate state on this surface to
serve as the “initial conditions” for subsequent evolution accord-
ing to the standard big bang model.

Shortly after the first models of inflation were proposed, theorists
turned to questions regarding the pre-inflationary initial state and the
large-scale implications of inflation. Vilenkin, Linde and others argued
that globally inflation should continue indefinitely, even as some
regions make the transition to a more sedate expansion rate. There
are two defining features of what is now called eternal inflation (EI):
(i) inflationary expansion continues indefinitely, (ii) regions where
inflation ends can be treated as independent “pocket universes.” I will
briefly review two arguments in favor of eternality, based on stochastic

evolution of the inflaton field and tunneling from a false vacuum state,
that have been developed for different versions of inflation.8

One account of EI is based on effects of quantum fluctuations in
the field ϕ during its “slow roll” down a nearly flat potential VðϕÞ.
Classically the field rolls down the potential, described by a
solution ϕsr. Stochastic inflation treats the evolution of ϕ semi-
classically, with quantum fluctuations leading to random jumps
superimposed on the classical trajectory. In many inflationary
models, there is a range of field values within which the random
jumps are sufficiently large to dominate over the slow-roll
trajectory ϕsr. Roughly speaking, this will be the case if the typical
amplitude of a “jump” is larger than the variation in the field along
the slow-roll trajectory (for a given time scale); then the jumps
“up” the potential are large enough to counteract classical slow-
rolling down the potential. The effect of such a fluctuation-
dominated regime is to extend the inflationary phase. Since the
jumps in spatially distant regions are presumably uncorrelated,
the duration of the inflationary stage will vary across different
regions. This stochastic evolution of the inflaton field yields a
reheating surface that consists of disconnected components sepa-
rated by regions with ongoing inflation. “Pocket universes” corre-
spond to non-compact, connected components of the reheating
surface, each of which may have infinite spatial volume despite
originating from a finite spatial region.

EI may also arise via quantum tunneling from a false vacuum
state. Rather than a flat potential, this approach assumes that VðϕÞ
includes at least one barrier sufficient to classically confine ϕ in a
false vacuum state. Quantum effects may allow the field to evolve
out of this state, due either to thermal fluctuations or to quantum
tunneling. This leads to the formation of a bubble with a new value
of ϕ, with dynamics and a bubble nucleation rate described by
Coleman and De Luccia (1980). For typical scenarios, the bubble
nucleation rate is sufficiently low that the bubbles do not merge
into a single domain; instead, each bubble is treated as a “pocket
universe”—the bubble's interior is an infinite, homogeneous open
universe. For a sufficiently low nucleation rate inflation will be
eternal, in that the global volume of spacetime undergoing
inflation increases exponentially, even though any given region
eventually tunnels out of the false vacuum state and stops
inflating. This approach to EI has been connected in recent work
with string theory, with tunneling taking place among the vast
number of possible metastable vacua constituting the string
theory “landscape.”

Even this brief discussion illustrates that the potential VðϕÞ and
the initial field values must satisfy some constraints in order for EI
to arise. Advocates of EI typically argue that it is “generic,” in the
sense that the most “natural” models of inflation satisfy these
constraints. Yet these claims (as noted by, e.g., Aguirre, in press;
Guth, 2007) have not been made precise. This would require
delimiting the space of allowed potentials and initial field values
and introducing a measure over this space, in order to assess
whether the conditions for EI are satisfied within “most” models
compatible with observations. In place of a more thorough under-
standing of the space of allowed models and how many of these
lead to EI, one has qualitative arguments focusing on the stochastic
nature of the end of inflation. On either of the approaches
described above, an incredibly unlikely correlation between phy-
sical properties in distant regions would be required for inflation
to come to an end globally.

These arguments in favor of EI are contentious, for reasons that
I will discuss briefly in Section 8. Here my main aim is to assess the

8 This is not an exhaustive list, and it excludes in particular “topological
inflation,” in which topological defects seed eternal inflation. See Aguirre (in
press) for an overview of these different approaches, which I draw on here, and
further references.
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evidential value of anthropic predictions, so for the bulk of the
paper I will bracket objections to EI and focus on making predic-
tions in the multiverse. I will also bracket problems with inflation
itself, such as the question of how the quantum fluctuations in the
vacuum state become classical density perturbations and the
plausibility of introducing a scalar field with the appropriate
properties to drive inflation. These and other problems have
motivated the study of alternatives to inflation, as discussed, e.g.,
in Brandenberger's contribution to this issue.

3. Anthropic prediction of Λ

Weinberg's (1987) prediction of the value of Λ exemplifies
successful anthropic prediction, and is routinely cited as powerful
evidence in favor of EI. I will use this case to introduce some of the
features of anthropic predictions, before turning to an examination
of the rationale for such predictions in the next section.

The background to Weinberg's calculation is our humbling
inability to understand the value of Λ in terms of fundamental
physics. The calculation of the value of Λ within QFT is often
cited as one of the worst theoretical failures in physics: the
result is 120 orders of magnitude larger than the value of the
cosmological constant inferred from observational cosmology.
The calculation assumes that the vacuum energy of quantum
fields couples to gravitation as an effective Λ-term.9 The vacuum
energy is given by integrating the zero-point contributions to
the total energy, 1

2 ℏωðkÞ per oscillation mode, familiar from the
quantum harmonic oscillator, over momentum (k). Evaluating
this quartically divergent quantity by introducing a physical
cutoff at the Planck scale leads to the huge discrepancy.10

Theorists once sought a new dynamical principle or symmetry
that would force Λ to be exactly zero. With new observational
evidence in favor of dark energy in the late 1990s, the question
is now why Λ is not exactly zero but is still very small relative to
the vacuum energy density calculated in QFT.

Weinberg (1987) predicted a non-zero value of Λ at a time when
it was routinely assumed to be zero (in spite of the QFT calculations).
The predicted value fell within two orders of magnitude of currently
observed values. The first step of the argument elucidates constraints
on Λ, which cannot be an entirely free parameter within the
standard big bang model of cosmology. Because a Λ term does not
dilute with expansion, a cosmological model with Λ40 will even-
tually undergo a transition from matter-dominated to vacuum-
dominated expansion. Weinberg showed that structure formation
via gravitational enhancement of initial inhomogeneities stops in the
vacuum-dominated stage. Large, gravitationally bound systems (large
enough to lead to the formation of stars) are a plausible proxy for
observers. The existence of such systems imposes an upper bound on
possible values of Λ, assuming one keeps other aspects of the
Standard Model fixed.11 There is also a lower bound. A negative Λ

term contributes to EFE in the same way as normal matter and
energy. So adding a large negative Λ term leads to a model that
recollapses, in a gravitational big crunch, before observers arrive on
the scene.

The anthropic element of Weinberg's argument appears in the
transition from noting these constraints to predicting what a
typical observer should measure. Grant, as a hypothesis, that we
inhabit a multiverse in which the value of Λ varies across different
regions. (Weinberg, 1987 did not endorse a particular multiverse
hypothesis, instead listing four proposals that would suffice for his
argument.) An anthropic prediction requires specifying, first, the
probability distribution for values of Λ in distinct regions of the
multiverse. In principle, the prior probability distribution PiðΛÞ
should be calculable within a given multiverse proposal; in
practice, one often makes do with plausibility arguments. For
example, there is a general argument in favor of assigning a
uniform probability distribution over a constant αi, within the
anthropic bounds: the probability distribution can be treated as
uniform if the constant varies in the multiverse over a range that is
much larger than the anthropically allowed interval. This argu-
ment has been used to justify a uniform probability PiðΛÞ. The
second step takes the presence of observers into account. Suppose
we take the existence of galaxies as a proxy for observers, and are
able to calculate how this varies as a function of Λ, obtaining
NðΛÞ—the number density of galaxies as a function of Λ, normal-
ized to unity. A “randomly chosen” observer should then assign
the following probability: PðΛÞ ¼NðΛÞPiðΛÞ.12

This is, schematically, Weinberg's line of argument; subsequent
refinements assign a probability of 5%, or 12% (depending on other
assumptions regarding the cosmological model), to the currently
measured value. At first blush this seems too inaccurate to support
a research program. Yet this is a striking success relative to the
failure of other proposals for understanding the value of Λ.

The next sections will take up problems related to PiðΛÞ and
“typical” observers. For the sake of completeness, I will briefly
mention other problems orthogonal to these (cf. Aguirre, 2007a).
Like many other anthropic predictions, Weinberg's focuses on a
single constant among the many that could vary. Broadening the
scope to include variation in a multi-dimensional space may
undermine several aspects of the argument. The anthropic con-
straints on Λ implicitly keep a number of other factors fixed. For
example, the effect of Λ on structure formation can be counter-
acted by increasing the amplitude of the initial density perturba-
tions. The arguments for assigning a uniform probability to PiðΛÞ,
and estimates of NðΛÞ, do not directly carry over to the multi-
constant case. It is often quite difficult to consider the combined
effects of variation in a multi-dimensional space, so cosmologists
have focused on cases which seem “clean” in the sense that there
are physical reasons to expect the value of a given constant to be
relatively unconnected with other constants. Aguirre (2007a)
emphasizes the possibility of a quite different kind of anthropic
prediction. If there are a large number of constants that vary in the
multiverse, one would expect physically unrelated constants to
have “coincidental” values due to the selection effect.

9 Several philosophers of physics have questioned this assumption, given that
the coupling of vacuum energy to gravity arguably plays no role in the empirical
success of QFT, see, in particular, Rugh & Zinkernagel (2002) for a thorough
discussion, as well as Earman (2001) and Saunders (2002).

10 The relevant integral is

ρv ¼
Z ℓ

0

d3k

ð2πÞ3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2þm2

p
2

� ℓ4

16π2

For a Planck scale cut-off, ℓp � 1:6� 10�35 m, the vacuum energy density is then
given by ρv � 2� 10110 erg=cm3, compared to observational constraints on the
cosmological constant—ρΛ � 2� 10�10 erg=cm3. Choosing a much lower cut-off
scale, such as the electroweak scale ℓew � 10�18 m, is not enough to eliminate the
huge discrepancy (still 55 orders of magnitude).

11 More precisely, the upper bound relates the Λ term to the total energy
density in matter at the time when most galaxies formed; the upper bound on Λ is
� 200 times the contemporary matter density (as noted previously in Barrow and

(footnote continued)
Tipler 1986, section 6.9). Considering variation of multiple parameters may
undermine this bound; larger values of Λ can be tolerated if one increases the
amplitude of the initial spectrum of density perturbations, for example. This
illustrates a more general problem with anthropic arguments, namely the limita-
tions of treating constraints on a single parameter instead of constraints on a set of
free parameters, see Aguirre (2007a) for further discussion.

12 Note that anthropic predictions do not require a uniform probability.
Suppose instead that PiðαiÞ monotonically increases in one direction, and that
NðαiÞ is sharply peaked near the observed value. Then the observed value should lie
near the corresponding edge of the allowed range rather than near the mean; this
has been called the “principle of living dangerously.”
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4. The measure problem

The multiverse of eternal inflation consists of an infinite
ensemble of pocket universes.13 The “measure problem” refers to
two related obstacles to introducing probabilities characterizing
the variation of observable quantities across the multiverse. First,
one needs to characterize the ensemble or sample space Σ ,
equipped with a measure μ. This is difficult due to incomplete
knowledge regarding the sample space Σ, and the lack of a unique,
physically motivated measure μ. Many of the measures that have
been considered are non-normalizable, i.e. μðΣÞ ¼1. This leads to
the second obstacle to defining a probability distribution over the
physical properties of pocket universes. Suppose that the measure
μ is connected to probability by a form of the principle of
indifference: subsets of equal μ-measure are assigned equal
probability. For a normalizable μ, probabilities can be introduced
by the ratio of favorable cases (falling within a measurable subset
SDΣ) to the whole space: PðSÞ ¼ μðSÞ=μðΣÞ. Yet if μ is non-
normalizable, probabilities introduced in this way will typically
be undefined (see, e.g., Hollands & Wald, 2002a,b). The probability
(for a measurable subset S) will be well-defined in two cases: if
μðSÞo1, then PðSÞ ¼ 0; and if μðΣ\SÞo1 (where Σ\S is the
complement of S), then PðSÞ ¼ 1. If μðSÞ ¼1 and μðΣ\SÞ ¼1, on
the other hand, the probability is not well-defined. Nearly all of
the probabilities one would like to compute fall into this
third case.

Probabilities can be introduced for the third case via a “reg-
ularization procedure.” Returning to the example mentioned in
Section 1 (also discussed in Guth, 2007; Schiffrin & Wald, 2012),
the natural answer that a random natural number has a 1=2
probability of being even can be defended by defining the prob-
ability as follows:

PðSÞ ¼ lim
n-1

μðS \ snÞ
μðsnÞ

; ð2Þ

where S is the property of being even, sn ¼ f1;2;3;…;ng, and μ is
the counting measure. Different sequences of finite subsets, such
as s′n ¼ f1;3;5;2;7;…;ng, lead to a different probability. The
strategy in this simple case—defining probability as a limit, using
a nested sequence of subsets of Σ—applies more generally. But this
trick relies on introducing additional structure, namely the choice
of a particular sequence of nested subsets. The probabilities so
defined are only as well justified as the choice of this further
structure. Recent discussions of the measure problem have
focused on finding a regularization procedure in order to extract
probabilities, but as in this simple case they require introducing
further structure.

There are two quite different contexts in which the “measure
problem” has been discussed in cosmology. In the first, the
ensemble consists of a set of solutions to EFE and the measure
in question is the canonical phase space measure. The need for
additional structure to extract probabilities from a non-
normalizable space has been particularly clear in debates regard-
ing the probability of inflation. The second case is that of eternal
inflation, in which the ensemble consists of a collection of
observers (or some other type of object) occupying a single,
connected multiverse.

4.1. Phase space measures

Attempts to estimate the “probability of inflation” nicely
illustrate the difficulties associated with introducing probabilities

in cosmology. Gibbons, Hawking, and Stewart (1987) addressed
the question of how likely it is for inflation to occur, based on
defining a measure μGHS on the space of homogeneous and
isotropic solutions to EFE coupled to a scalar field ϕ.14 The
measure they introduced follows naturally from the Hamiltonian
structure of general relativity, and they argued that it gives a high
probability to N b1 e-foldings of inflation in the early universe.
(I will return to the connection between the phase space measure
and probability in Section 5.)

Yet this use of the canonical measure involves a subtle
ambiguity (first noted in Hawking & Page, 1988, cf. Ashtekar
& Sloan, 2011; Schiffrin & Wald, 2012). The probability of inflation
falls into the third case described above: it is not well-defined
without some further structure. The canonical measure is non-
normalizable, but this can be dealt with by shifting from the
original phase space Σ to an alternative Σ′, obtained by identifying
points in Σ that lie on the same dynamical trajectory. One requires
additional structure to define the canonical measure on Σ′ based
on μGHS—namely, the choice of a value of the Hubble parameter.
The measure on Σ′ depends explicitly on this choice. A well-
defined probability can then be obtained by regularizing the phase
space for this value of the Hubble parameter; that is, considering
the finite subset of models with a scale factor smaller than some
cut-off ac and then taking the limit ac-1. This regularization
procedure depends, however, upon the initial choice of a Hubble
parameter (equivalently, choice of a particular cosmic time).
Carroll and Tam (2010) estimate the probability for 60 e-foldings
of inflation to be near one, based on choosing an “early time” (pre-
inflation) compared with the probability of 10�80 calculated by
Gibbons and Turok (2008), given a “late time” (post-inflation).
Here my purpose is not to argue for the legitimacy of choosing an
“early” or “late” time, but to emphasize that the apparent conflict
reflects the choice of an additional structure that is required to
obtain a well-defined probability.

4.2. Observer-based measures

The second type of measure is introduced to answer questions
regarding correlations between particular structures and other
properties in the multiverse. For example, what is the probability
of observing a value of Λ within a particular interval, given the
existence of galaxies? As noted above, the probability for a
“randomly chosen” galaxy is taken to be PGðΛÞ ¼NGðΛÞPiðΛÞ, where
PiðΛÞ is the prior probability distribution and NGðΛÞ is the normed
number density of galaxies. I have followed Winitzki (2009) in
referring to this as an “observer-based” measure, although one can
choose to conditionalize on other structures instead, from “space-
time volume” to “pocket universes” to “Hubble volume identical to
the observed universe.” (Although my focus will be on “observers,”
similar problems arise for other choices.) The ensemble Σ consists
of the collection of observers in the multiverse, a single causally
connected spacetime. Calculating the posterior requires a measure
μ over the chosen ensemble, as well as a way of regularizing the
measure if μðΣÞ ¼1.

It is challenging to find an appropriate measure, and regular-
ization procedure, because the EI multiverse lacks symmetries or
other structures that could be exploited for these purposes.
Cosmologists have pursued a number of different measure propo-
sals, and most of these fall into two types: global (or volume-

13 See Ellis, Kirchner, & Stoeger (2004) for a general, systematic discussion of
multiverse ensembles and the measure problem.

14 This measure is not, properly speaking, a canonical phase space measure, as
it is given by the pull back from the volume element on a Hamiltonian phase space
onto a hypersurface intercepting a bundle of trajectories. To be clear, the measure is
defined over this space of solutions, each regarded as an independent cosmological
model, rather than over a single connected spacetime consisting of distinct pocket
universes (as in eternal inflation).
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based) and local (or worldline-based).15 Global measures take the
ensemble to consist of all observers in the multiverse, whereas
local measures define the ensemble as the collection of observers
falling within some (possibly finite) region—e.g., those “close” to a
given timelike curve.

Several proposed global measures consider the collection of
observers lying to the future of some finite region of spacetime
cut-off at some time t, and then take the limit as t-1. Fix, for
example, a finite spatial, achronal hypersurface Σ in a region
undergoing inflation, and consider a congruence of timelike
geodesics orthogonal to Σ. The spacetime region traced out by
this collection of curves after some “time” τ0, after inflation comes
to an end in local pockets, should include only a finite number of
observers. We can then define a finite ensemble of observers, with
a measure μ assigning equal weights to equal volumes of the initial
hypersurface Σ. In other words, the weight of a given pocket
universe (and all of its inhabitants) will be determined by the
fraction of the curves emanating from Σ that occupies it. The
probabilities assigned in the limit should be insensitive to the
initial choice of Σ. Several proposals share this basic starting point,
and diverge in choosing an appropriate “time” to use in defining
equal volumes and taking the limit.

A natural first proposal is to consider the proper time elapsed
along the curves emanating from Σ . This proposal has been
rejected due to the “youngness paradox.” The measure μPT assigns
probability proportionally to the spacetime volume at some
elapsed proper-time τ0, in the limit as τ0-1. During inflation,
spacetime expands exponentially; in stochastic models of infla-
tion, the number of pocket universes is proportional to volume, so
this number also increases exponentially. As Guth (2007) puts it,
this leads to a “youth-dominated society” of pocket universes: at
any given time, “youthful” pocket universes will far outnumber
more mature ones. Probabilistic predictions based on μPT are thus
strongly weighted toward youth, predicting (for example) that
observers in a universe 13 Gyr old should vastly outnumber those
in a universe 13.7 Gyr old.16 Subsequent global proposals have
used a different time-coordinate in defining the measure, such as
the “scale-factor” measure obtained by replacing proper time with
a time function that depends on the local expansion rate. This
measure assigns equal weight to co-moving volumes, and as a
result avoids the youngness paradox.

Local proposals single out a particular worldline and an
associated collection of observers, such as those falling within
the “causal diamond” determined by the worldline, its apparent
horizon, or a fixed spacetime distance. This leads to a finite
collection of observers provided that the worldline has finite
length, so there is no need for a regularization procedure. The
results of the calculation will, however, depend upon the specific
choice of a worldline. Thus, by contrast with the global measures,
the local measures do not reflect the “attractor” behavior of
inflation: namely, that EI will lead to something like an equili-
brium distribution of different properties in the multiverse at late
times. The local proposals need to be supplemented with a
specification of initial probabilities over the different worldlines
to yield general results.

Currently the measure problem is unresolved, with no agree-
ment on the appropriate measure to use in EI. The debate also

seems to reflect basic disagreements about what desiderata a
measure should fulfill. One part of the debate is relatively
uncontroversial. Candidate measures are evaluated phenomeno-
logically by assessing their predictions. As described briefly above,
the proper time measure has been rejected because it assigns a
very low probability to an “old” universe such as ours, and similar
results have been obtained for other measures. But the debate also
focuses on how a measure choice relates to fundamental physics.
The terms for doing so have shifted along with the theoretical
context in which EI has been studied. In the 1990s, Vilenkin and
several collaborators studied the measure problem in the context
of stochastic inflation, whereas more recent studies by Bousso,
Freivogel, and others have treated the problem within the context
of string theory. It is not clear whether current theories are
sufficient to determine a unique measure choice for EI. Rather
than venturing into this debate, in the following I will consider
further problems that arise even if one grants that this difficult
problem has been solved.

5. Typicality

Grant, for the sake of argument, that we have a well-motivated
“pocket-counting” measure μn that allows one to count elements
of the ensemble. This measure presumably reflects the physical
mechanism that generates the pocket universes and variations in
the constants αi among them. It seems natural to take the
probability that the value of a constant αi falls within a specified
range (α i7δ), for example, to be Pðα iÞ ¼ μnðSα Þ=μnðΣÞ, where Sα
denotes the subset of pocket universes for which this condition
holds. Suppose we further grant that the measure yields a finite
result rather than a ratio of infinities. The probability then
represents the chance of finding the value of αi within the
specified range at a “randomly chosen” pocket universe within
the multiverse. (The choice is “random” with respect to μn: subsets
assigned equal μn-measure are equally probable.) Following Wein-
berg's treatment of the cosmological constant (Section 3), we can
also take selection effects into account by estimating the normal-
ized number density NðαiÞ of observers in each pocket universe, as
a function of the constant αi. If we further assume that a “typical”
observer is chosen at random from among all observers, then the
probability distribution for such an observer's measurement of αi

is PðαiÞ ¼NðαiÞPiðαiÞ, as in Section 3.
This line of thought leads directly from the measure μn to

anthropic predictions for αi. Yet I will now argue that an ensemble
equipped with a measure is not sufficient to justify physical
probabilities. The assignment of probabilities depends on “ran-
domly choosing” among the elements of the ensemble or the class
of observers. We cannot just equate the chance or objective
probability that a given pocket universe has a value of αi within
some range with the proportion of the elements of the ensemble
that do so. For to do so, we need to invoke, a distinct idea of chance
—the equal chance that each μn-equal subset of the ensemble, or
each observer, has of being picked out. This second notion of
chance makes a substantive claim regarding how an element of
the ensemble is chosen. For the phase-space measure, I will argue
that a claim to this effect has to be regarded as an independent,
and hitherto unmotivated, assumption. I will further argue that an
alternative that associates the “random choice” with the epistemic
situation of a cosmologist, who should reason as if she is a typical
member of an appropriate reference class, fares no better.

5.1. Physical probabilities

In the case of the phase-space measure, such as μGHS discussed in
Section 4.1, there is a suggestive analogy with probabilities in

15 Here I will not go into the details involved in implementing these general
ideas in different approaches to EI, or explore the connection with properties of the
string theory landscape of allowed vacua. For more systematic reviews of various
proposed measures, including ideas that do not fall into either of these two camps,
see, for example, Vilenkin (2007), Aguirre, Gratton, & Johnson (2007), Winitzki
(2009), De Simone et al. (2010), Freivogel (2011).

16 More concretely, as Tegmark (2005) showed, this measure assigns a very low
probability to the observed temperature of the CBR.
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statistical mechanics. Textbook presentations of statistical mechanics
often invoke the principle of indifference in justifying probabilities,
along similar lines to the argument above. Consider, for example, an
isolated classical system with conserved total energy. The phase space
for the system is equipped with an invariant measure μ that naturally
induces the micro-canonical measure μE on constant energy hyper-
surfaces. It is plausible to define the probability of finding the system
in a region of phase space S, a subset of the energy hypersurface, at a
“randomly chosen” time, to be μEðSÞ. This seems to depend only upon
the principle of indifference, suggesting a defense of cosmological
probabilities based on μGHS.

This account of the justification of probabilities in statistical
mechanics is, however, quite misleading. It ignores the dynamics!
The status of physical probabilities in statistical mechanics is one
of the most contentious topics in the foundations of physics, but it
will be useful to briefly sketch the role of dynamics in the ergodic
approach. Two aspects of the dynamics are particularly important.
If a system's trajectory remained confined to a region S1 of the
energy hyper-surface, and did not intersect S2 (with μEðS1Þa0 and
μEðS2Þa0), the suggestion above would assign incorrect probabil-
ities. A dynamical system is called metrically transitive if it is
impossible to find subsets like S1; S2—non-overlapping, positive
measure, and closed under dynamical evolution. This property is
sufficient to prove a version of the ergodic theorem, which
(roughly speaking) establishes the equality between time averages
and phase averages with respect to μ and justifies the familiar
application of probabilities to the properties of a system in
equilibrium. Second, the appeal to ergodicity only justifies
using probabilities in a specific context. The dynamics for a given
system will determine the time scale on which the system
relaxes to an equilibrium state. At shorter time scales, the system
will still bear the imprint of the initial state, rendering equilibrium
probabilities incorrect. Thus the equilibrium probabilities can only
be justified for time scales larger than the dynamical relaxation
time, such that the “memory” of the initial state will be
washed out.

This way of justifying probabilities does not extend to classical
cosmology. The mathematical apparatus used in stating the
ergodic theorem is a poor fit for general relativity. What would
it mean for a single system to “sample” the phase space, consisting
of different cosmological models? Furthermore, the phase space is
non-compact with infinite measure, even in subsets of the phase
space obtained by imposing symmetries (such as minisuperspace).
Finally, there is not a straightforward analog of time-translation.
Even if we could circumvent these problems, the timescale for
dynamical relaxation for large-scale gravitational degrees of free-
dom is of the same order of magnitude as the current age of the
universe. Schiffrin and Wald (2012) argue persuasively, based on
these and other considerations,17 that the strategy used to justify
equilibrium probabilities in statistical physics sketched above does
not apply to classical relativistic cosmology. The association
between μGHS and probability has to be regarded as a bald posit
—a posit about as well supported as the conceit of a Creator
choosing an initial state by throwing darts at a board with
measures of areas given by μGHS .

Shifting venues to semi-classical or quantum gravity may
improve the prospects for basing cosmological probabilities on
something like ergodicity. Several authors have argued for a form
of ergodicity provided by the mechanism for creating pocket
universes—in slogan form, EI “populates the string theory land-
scape” (see, e.g., Brown & Dahlen, 2010; Clifton, Linde, &

Sivanandam, 2007). These arguments have been used to bolster
the idea that EI will produce an equilibrium ensemble of pocket
universes, if the multiverse-generating mechanism provides a
(sequence of) allowed transitions connecting any two vacua in
the landscape. These suggestions are still very speculative, but it is
at least clear that detailed study of the dynamics will be needed to
establish whether an analog of ergodicity holds and to estimate
the relaxation time. If quantum gravity justifies probabilities
where classical general relativity does not, it will be due to the
dynamics of the theory rather than an appeal to the indifference
principle.

5.2. Epistemic probabilities

A different approach treats the probabilities associated with the
measure as subjective. Probabilities would then be justified on the
basis of the “principle of mediocrity” (PM, following Vilenkin, 1995 cf.
Garriga and Vilenkin 2008): we should reason as if we are a typical
member of the reference class of observers.18 The “random choice” is
associated with the epistemic situation of a cosmologist evaluating a
theory. We imagine that the cosmologist has, in a sense, third-person
information about the distribution of physical systems that qualify as
“observers” (or some other chosen reference class) throughout the
multiverse. Yet she lacks first-person or indexical information singling
out one of these systems as “herself.” She should then, according to
the advocates of PM, reason as if she is a “randomly chosen member”
of the reference class of observers. The resulting sense of probability
introduced is obviously epistemic, and this proposal does not require
(as Bostrom, 2002 emphasizes) a physical process such as a cosmic
lottery determining where in the universe one's soul is imparted.
What the proposal does require, however, is an argument that the
epistemic situation of a cosmologist demands using this new type of
reasoning, along with a clear characterization of the rules she should
follow to do so.

Philosophers have imagined situations (such as Elga's (2000)
Sleeping Beauty problem) in which it is plausible that one should
reason as an agent who has all relevant non-indexical information, but
lacks indexical information. Yet the arguments as to why cosmologists
should also reason in this way are not nearly as compelling. When this
question is addressed at all, cosmologists often invoke the infinity of
the multiverse. Tegmark's (2003) calculation that a nearly identical
copy of you, who differs only in deciding to stop reading this paper on
the previous sentence, is probably found within a distance of 101028 m,
is fairly typical.19 All evidence available up to a moment ago does not
distinguish between you and such a multiversal doppelgänger (one of
many), and it supposedly follows that you should reason as if you
were a random choice drawn from this reference class.20 Advocates of
the PM treat this as an obvious step, and try to shift the burden of
proof to an opponent who advocates something other than random
choice. Yet this fails to address why the proposed “random sampling”
and the associated epistemic probability is even relevant to evidential

17 They discuss a further more subtle contrast: introducing an analog of time
evolution for minisuperspace models leads to a time-dependent Hamiltonian. This
poses a further obstacle to equilibration, since the Hamiltonian (and hence energy)
of the system will depend on its initial state and subsequent history.

18 Vilenkin's (1995) formulation used “civilization” as the reference class: we
should reason as if our civilization is “randomly chosen” among all the civilizations
in the multiverse. Bostrom (2002) formulates a similar principle, his “Self Sampling
Assumption”: One should reason as if one was a random sample from the set of all
observers in one's reference class. He later discusses a modification which takes the
appropriate reference class to be “observer-moments.”

19 Precisely what distance is being estimated is not entirely clear, given that the
multiverse may lack the structures necessary to identify a sensible notion of spatial
distance. Tegmark's argument is also typical in not acknowledging that infinity
alone is not sufficient to ground such claims; one must also assume that there is
some source of appropriate variations, a point emphasized in Mosterín (2005) and
Zinkernagel (2011).

20 This reference class would be maximally fine-grained, consisting of indivi-
duals with a full data set as close as possible to yours up to the point of divergence.
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reasoning in cosmology.21 The debate here is not between randomly
picking an observer from among a given reference class or some other
unmotivated, biased weighting, but between different accounts of how
to assess evidence. Why should the existence of multiversal doppel-
gängers with the same data affect our cosmologist's assessment of a
theory based on her data? In other words, why should the cosmolo-
gist's method depend on the infinity of the multiverse?

Even more problematic is the lack of a clear account of what the
cosmologist willing to reason in line with the PM is actually supposed
to do. Advocates and critics of the PM have, for the most part,
conducted the debate within the context of a Bayesian approach.22

There is then a clear contrast between different proposals: BU
(Bayesian Updating)—following the standard Bayesian updating rule
for adjusting one's credences in light of new evidence, or AR (Anthro-
pic Reasoning)—a specific modification of the Bayesian rule, or
alternative account of inductive methodology, to be applied in
anthropic reasoning. There is not a single, canonical candidate for
AR. But versions of AR typically require the choice of a reference class,
from which “you” are randomly chosen.

The difference between BU and AR can be illustrated using the
case of Λ. The main contrast concerns how the prediction of vast
regions of the multiverse unfit for the presence of observers is
handled. Consider the evaluation of a multiverse theory TM in
which Λ varies in different pocket universes, equipped with a
measure μn that successfully regulates infinities, in comparison to
a single-universe theory T1 which treats the value of Λ as a free
parameter. We will take the range of values of Λ compatible with
all available evidence to be Δ (and assume that this is not empty).
In applying BU, assuming that we assign the theories equal prior
probabilities, the difference in the credence assigned to them will
depend on two numbers: the fraction of pocket universes in which
ΛAΔ (call this SΛ ), PM ¼ μnðSΛ Þ=μnðΣÞ, according to TM; and P1, the
probability assigned to SΛ by T1. Given evidence that Λ falls with
Δ, the odds ratio for TM to T1 will be PM=P1.

23 Within the standard
Bayesian approach, then, the evaluation of the two theories
reflects the probability they assign to a value of Λ within Δ.
TM suffers in comparison with T1 if it predicts a large number of
pockets in which Λ falls outside of Δ, as PM will then be lower. The
assessment also does not depend on considering how Δ compares
to the range of values of Λ, call it Δ′, compatible with “observers”
(or some other reference class defined by AR, such as “civiliza-
tions” or “galaxies”). In contrast, the effect of AR is to replace PM
with P′M ¼ μnðSΛ Þ=μnðAÞ, disregarding the pocket universes that
fall outside the “anthropic” subset A, for which ΛAΔ′. The theory
TM is no longer punished for predicting observer-less pocket
universes with incorrect values of Λ. But the assessment depends
on a choice of the appropriate reference class: μnðAÞ depends on
whether we consider observers, the existence of galaxies, etc.

It is unappealing to have the assessment of evidence vary
depending on the choice of reference class. For if we consider
“observers” as the appropriate reference class, it is difficult to assess

whether observers can arise in physical conditions significantly
different from those of our universe. Yet the advocate of AR has to
address this difficulty in order to count the number of pocket
universes with observers, and then evaluate μnðAÞ. Furthermore, the
simplest version of AR leads to paradoxical conclusions. The Dooms-
day Argument, for example, follows from applying PM to one's place
in human history. Imagine the (in)numerable caravan of humanity,
encompassing the entire history of mankind ordered chronologically
by birth, lumbering toward that mysterious realm. If our place in the
caravan is “typical,” there should be roughly as many ahead of us as
behind. For this to be true, given current population growth rates,
there must be a rapid drop in the growth rate of the human
population—“doomsday”—in the near future. This striking conclusion
seems absurd as it depends on almost no empirical input.24

The Doomsday Argument and other paradoxical conclusions drawn
from the most straightforward versions of AR have led to other
proposals. Bostrom (2002) considers combining PM with a second
principle he calls the “Self Indication Assumption” (SIA), according to
which the prior probabilities of theories are proportional to the
number of possible observers they predict. In the case of the Dooms-
day argument, accepting SIA blocks the paradoxical conclusion. The
priors are adjusted precisely to cancel the effect of introducing the
reference class and the PM, leading to the same conclusion that would
have been obtained by applying BU directly.25 It is unclear what is
accomplished by this indirect route to the same conclusion. Further-
more, the SIA is unacceptable as a general principle (as Bostrom, 2002
notes) for the following reason. Given two theories differing in their
yield of predicted observers by a factor of, say, 1020, it would be nearly
impossible for empirical results to sway credences in favor of the
theory with fewer observers. The ratio of priors required by the SIA
dominates the assessment of posterior probabilities for the two
theories.

5.3. Summary

Summing up this line of argument, two existing proposals for how
to relate a measure to probability fall short of their mark. One strategy
for basing physical probability on the measure (Section 5.1), by
appealing to ergodicity, does not extend to cosmology. The second
proposal (Section 5.2), which introduces a new inductive methodology
appropriate for cosmology in an infinite universe, would treat the
probabilities as epistemic, associated with an observer's lack of
indexical information regarding her location in the multiverse. I have
argued that the reasons for adopting a new methodology are not
compelling, and existing proposals for the revised updating rule lead
to paradoxical conclusions.

In both cases, my objections may indicate a failing of current
discussions of these issues rather than a basic failing of the proposal.
This is certainly not an exhaustive discussion, and at best I hope to
have formulated challenges to introducing probabilities. Recent work
in the foundations of physics on probabilities in statistical and
quantum physics suggests a number of other strategies for justifying
physical probabilities that may be fruitfully applied here. There are also
specific proposals tying EI to the Everettian interpretation of quantum
physics, and perhaps a decision-theoretic approach to understanding
the nature of probabilities in the Everettian interpretation can be
employed in EI as well.

21 The problem I am addressing is not the problem of “freak observers” (in
Bostrom's terminology) or “Boltzmann Brains” (physics terminology), which con-
sider a reference class—moments of observations or brain states—such that most
members of the class have non-veridical observations. By contrast, I am considering
here a class of observers whose entire Hubble volume is as close as one may care to
specify to that of a given observer, and whose observations are (mostly) veridical.

22 Norton (2010) criticizes anthropic reasoning as part of a general criticism of
Bayesianism, based on the claim that probability distributions do not correctly
represent evidential neutrality. The PM supports only an ascription of neutrality,
and hence on Norton's view not assignment of probabilities.

23 The odds for a hypothesis H are defined as OðHÞ ¼ PðHÞ=Pð:HÞ, and the odds
ratio is the ratio by which the prior odds must be multiplied given new evidence E
to obtain the conditional odds OðHjEÞ. Bayes’ theorem implies that the odds ratio
given evidence E is PðEjHÞ=PðEj:HÞ. In considering the odds ratio between two
competing theories, the factor corresponding to the so-called “catchall hypothesis”
(the negation of theories under consideration, in this case :ðT13TMÞ) cancels out.

24 One man's reductio is another man's proof, and the Doomsday argument has
its defenders, including Gott (1993), Leslie (1992); see Bostrom (2002) for a review
of this literature, and Dieks (2007), Norton (2010) for critical assessments.

25 This result has been noted and discussed before; see, e.g., Bartha & Hitchcock
(1999), Bostrom (2002), and Neal (2006).
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6. Evidence from anthropic predictions

Lack of clarity about the nature of probabilities involved in
anthropic predictions might not undercut their evidential value.
Foundational questions about the nature of probabilities in equili-
brium statistical mechanics remain unresolved, for example, yet
there is little dispute regarding the theory's empirical success.26

So now, for the sake of argument, I will set aside the objections
raised in the previous section regarding the propriety of prob-
abilities in the multiverse and grant that one can make sense of
the usual account of anthropic predictions. I will argue that, even
so, such predictions have little evidential value.

Consider, as an illustration, choosing between two theories
T1; T2 in light of anthropic predictions regarding the value of
constants (assuming that T1 is a multiverse theory).27 I will set
aside other considerations bearing on the evaluation of these
theories in order to isolate the impact of anthropic predictions.
What would have to be the case for anthropic predictions alone to
contribute substantial positive evidence?

This is not a lead-in to the shopworn criticism that multiverse
theories are not falsifiable because they posit pocket universes
that are in principle unobservable. My point is rather to draw a
contrast between the probative value of predictions in other cases
and anthropic predictions. Evidence in favor of our most well-
entrenched physical theories tightly constrains their structure, so
much so that it is hard to imagine an alternative theory governing
the same domain with equal success. I will argue that anthropic
predictions provide, by contrast, nearly no constraints on the
physics governing the formation of the multiverse.

Extracting anthropic predictions from T1 (and T2, if it is also a
multiverse theory) requires specifying: (i) the multiverse ensem-
ble Σ , (ii) the measure μ used to weight elements of the ensemble
and to regulate infinities, and (iii) the anthropically allowed subset
of the ensemble, A. Anthropic predictions then take the form of a
probability distribution over a collection of physical constants,
PðαiÞ, and (other things being equal) the theory assigning a higher
probability to the observed values of the physical constants is
favored by the evidence. The obstacles to utilizing anthropic
predictions reflect each of these three aspects of a multiverse
theory.

Regarding (i), the ensemble produced by T1 reflects the
dynamics generating the multiverse. The ensemble should differ
from a “kinematic” multiverse ensemble ℵ, consisting of pocket
universes realizing all possible combinations of the fundamental
constants, without dynamical constraints imposed by an account
of how the ensemble is generated.28 One might hope that the
results would differ quite strongly from the ensemble ℵ, in that
some combinations of fundamental constants either violate the
laws of the theory or are inaccessible given the allowed transitions
among pocket universes. But Smolin (2007) notes that this hope
runs counter to the decoupling of different energy scales in

renormalizable QFTs. Dynamics at the energy scale of grand
unification or higher is responsible for the formation of pocket
universes in EI, yet the constants discussed in connection with
anthropic predictions are related to energy scales several orders of
magnitude lower. He thus argues that EI should lead to an
essentially random distribution of low-energy constants, that is,
an ensemble indistinguishable from ℵ. Responding to Smolin's
criticism requires showing how T1 leaves an imprint on para-
meters characterizing low energy physics, yet many discussions of
anthropic predictions are vague on precisely this point. More
generally, it is clear that EI advocates need to specify the
ensembles generated by particular multiverse theories. If this is
not done, what is tested is the general idea that the constants vary
across different pocket universes, and not a specific physical
theory governing creation of a particular ensemble.

Turning to (ii), even if a measure that regulates infinities is
found, it may not be unique. If the theory T1 naturally dictates a
unique measure to be used in anthropic predictions, then the
success or failure of the predictions bears directly on T1. If there
are multiple candidate measures, by contrast, then what is
tested is instead the combination 〈T1;μj〉. Many discussions of
the measure problem exploit the freedom in choosing μj: the
aim is not to find a unique μ dictated by basic theoretical
principles, but rather to find some μj yielding anthropic predic-
tions compatible with what is observed. The obvious worry is
that T1 can be saved by gerrymandering. Furthermore, the
freedom to choose a measure threatens our ability to draw a
meaningful contrast between competing theories. On compar-
ing T1 to T2, the question is not whether T1 produces an
ensemble that leads to distinctive anthropic predictions given
a unique choice of measure. Instead, the assessment would then
regard the collections 〈T1; fμjg〉 and 〈T2; fμkg〉, where fμjg and fμkg
are sets of “reasonable” measures; we have then tested mea-
sures rather than theories. Even if there is an empirical contrast
between theories given a specific, unique measure, it seems
unlikely to survive as a clear contrast if we consider an entire
collection of possible measures.

Finally, there are two challenges posed by (iii) above, the choice
of an anthropic subset. The first was mentioned previously: how
do we delineate the set A? Suppose we choose to consider a
specific reference class, such as “observers” (with some specific
physical characterization in mind). What combinations of physical
constants realized in a pocket universe will support observers?
Aguirre (2001) argues that the number of solar-mass, metal-rich
stars as a function of various cosmological parameters has multiple
peaks, some quite far from the values for the observed universe.
Taking these stars as plausible proxies for “observers,” this
indicates that the normed number density of observers NðαiÞ will
be non-zero in widely separated regions of parameter space—
leading to a very complex anthropic subset A.29 The effect of
extending the anthropic subset is to lower the probability of a
universe like ours, assuming that the prior probability PiðαiÞ
assigned to such pockets is non-zero. The verdict in favor of one
of the theories can be reversed by discovering new regions of
parameter space that fall within its anthropic subset.

A clear contrast between two theories may disappear when
they are viewed through the anthropic filter, so to speak. This is
the second challenge posed by the choice of an anthropic subset.
Anthropic reasoning can convert an apparently disastrous

26 I will concede this point, for the sake of argument, although I remain
doubtful whether one can make sense of anthropic predictions without defending
the use of probability. I do not claim that the situation in statistical mechanics is
closely analogous to that in cosmology; while the correct way of grounding
probabilities in statistical mechanics is still contentious, the competing approaches
are much more well developed than in the case of cosmology.

27 See, for concrete examples, Smolin's (2013) comparison of EI, his proposal of
cosmological natural selection, and cyclic cosmologies, and Steinhardt's (2011)
discussion of EI compared to cyclic cosmologies.

28 This point is emphasized by Smolin (2007). I will assume that a kinematic
ensemble comes equipped with a measure μℵ , and is defined in light of dynamical
constraints from GR and the Standard Model of particle physics, but without taking
a position on the physics relevant to generating the multiverse (other than to
assume that there is some mechanism generating variation among pocket uni-
verses). It is unclear whether there is a unique or maximal ensemble satisfying this
description, but this point does not seem to be crucial for the argument in the text.

29 Aguirre explores the consequences of varying cosmological parameters.
Considering the physics of a universe with different constants appearing in the
Standard Model of particle physics would be much more challenging, but it is
plausible that at least one combination of constants quite far from those of the
observed universe could support the complexity required for the existence of
observers.
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prediction—in the form of a very low prior probability assigned to
the observed values of some constants—into a success. For exam-
ple, take T2 to be standard hot big bang cosmology restricted to
models with infinite spatial sections, regarding the gravitational
degrees of freedom at some specified initial time as uncorrelated
in spacelike separated regions. This leads to a plain vanilla multi-
verse Σ2, with variation only in cosmological parameters, such as
the amplitude of density perturbations and the curvature of finite
spatial hypersurfaces. The original motivations for inflation can be
re-iterated to make an argument in favor of T1 (a specific
implementation of EI) over T2: surely T2 assigns a vanishingly
small prior probability PiðαiÞ to the observed combination of
cosmological parameters, with their delicate balance between
overall flatness and small perturbations. Yet, by parity of reason-
ing, a defender of T2 can apply anthropic reasoning following the
lead of the proponent of T1. Restricting consideration to the
anthropic subset of Σ2 should raise the probability of the observed
cosmological parameters substantially, following Weinberg in
treating large gravitationally bound systems as a necessary condi-
tion for observers. As before, the details will depend on delicate
questions regarding the extent of the anthropic subset. But it is
surely the case that many quite distinctive ensembles look the
same when restricted to their anthropic subsets. This point can be
illustrated using Eddington's example of a selection effect. Edding-
ton noted that fishermen should not infer the absence of fish
smaller than the gaps in their nets from their inability to catch
them; similarly, they should not conclude that two lakes have
similar overall populations of fish based on similar distributions of
large fish.

These three aspects of anthropic predictions are implicit in discus-
sions of EI, although ironically they are often regarded as virtues. It is
supposedly a virtue of an anthropic prediction to be “robust” under
variations in the ensemble Σ and choice of measure. In other words,
some features of the ensemble Σ are expected to be quite generic,
independent of the finer details of the dynamics. In addition, even if
one cannot isolate a unique measure, there may be a class of
reasonable measures that yield the same anthropic predictions.
Similarly, the effect of choosing a particular anthropic subset is also
argued to have a minimal impact. These arguments provide some
assurance that anthropic predictions can be made in spite of our
ignorance about the relevant fundamental physics and lack of a
convincing resolution of themeasure problem. Yet these same features
ensure that anthropic predictions cannot reveal anything in quantita-
tive detail regarding the underlying dynamics producing the multi-
verse ensemble.

Wilczek (2007) comments that the intrusion of selection argu-
ments in fundamental physics represents a “lowering of expecta-
tions”: in a multiverse, we will not be able to compare theory and
experiment to one part in a billion, as in other historical cases in the
development of physics. To be more specific, and perhaps departing
from Wilczek's view, anthropic predictions provide little basis for
establishing a specific dynamical theory governing the creation of the
multiverse. This is clear from Weinberg's discussion of Λ (discussed
in Section 3), in which the prediction does not depend on exactly
which multiverse hypothesis one accepts. Using the word “predic-
tion” begins to seem almost purely rhetorical. One might hit a less
ambitious target, such as arguing that anthropic selection in a
multiverse offers better explanations than alternatives such as
intelligent design (as in Susskind, 2006). Yet such a defense of the
multiverse falls far short of the high standard of evidential con-
straints on theory achieved in other areas of physics. The line of
argument above aims to establish that it falls short not only due to
the inaccessibility of physics at the appropriate energy scales, which
is admittedly an important challenge, but also because anthropic
predictions cannot constrain the physics generating the multiverse
ensemble.

7. Alternatives

My negative assessment of the probative value of anthropic
predictions, given in Sections 5 and 6, does not entirely undermine
EI, as there are other arguments in its favor of a quite different
character. They are often presented alongside anthropic predic-
tions by proponents of EI, but it seems important to clarify the
nature of these other arguments. Here I will briefly discuss four
other lines of argument in favor of EI, based on: (i) philosophical
considerations, (ii) direct evidence, (iii) elimination of competing
ideas, and (iv) treating EI as a consequence of fundamental
physics.

Some advocates of the multiverse make their case, partially or
completely, based on broadly philosophical or metaphysical con-
siderations, without reference to empirical results. Tegmark's
position seems to be primarily based on considerations regarding
the applicability of mathematics (see, e.g.,Tegmark 2007). While
this line of argument certainly deserves further discussion, I do not
have space to assess it here. There are also consequences of EI that
apparently do not take the form of anthropic predictions as I have
characterized them. The discovery of the imprint of a bubble
collision in the CBR, with appropriate characteristics, would
provide direct evidence of interactions with another “pocket
universe,” potentially vindicating aspects of EI (see, e.g., Aguirre
& Johnson, 2011). Neither of these lines of argument are threa-
tened by my challenges to the evidential value of anthropic
predictions.

The third line of argument in favor of the multiverse treats it as
a “last resort” (see, e.g., Guth, 2007), to be accepted because of the
failure of other proposals. Grant for the sake of argument that a
fundamental theory with finely tuned fundamental constants is
not acceptable. Thus, as in the case of Λ, we demand a further
account for the observed value of the constant, and survey our
options. The case in favor of the multiverse based on Λ is perhaps
best regarded as an eliminative argument: no existing theory
offers a successful dynamical account for the small value of Λ, and
there are good reasons to doubt that any will be forthcoming. Once
all the alternatives have been eliminated as impossible, the only
choice remaining is to accept an anthropic explanation, however
improbable, as the truth—namely, the value of Λ is a parochial
feature of habitable pocket universes in a multiverse. Multiverse
advocates need to make a case that an anthropic explanation
should not be eliminated out of hand, as they once were. Whether
this style of argument leads to the correct conclusion depends
upon whether the best theory was included in the initial survey, or
else the eliminative step merely leads to the best of a bad lot.

Two questions arise in assessing such an eliminative argument.
First, are criteria for eliminating theories appropriate? In this
discussion it is not straightforward incompatibility with observa-
tions, but rather the need for unacceptably finely tuned funda-
mental constants that is used as the criteria for eliminating
theories. This leads to the second question. Have we cast the net
broadly enough in drawing up a list of alternatives? The strength
of the conclusion depends on whether we have done so.

These are both important questions, but in response to either
question anthropic predictions have a limited role. The predictions
merely establish that a proposed multiverse is in fact compatible
with observed values of some fundamental constant(s). Anthropic
predictions function as a compatibility check rather than a source
of positive evidence. So, in conclusion, an eliminative argument
sidesteps the worries about anthropic predictions raised above,
and shifts the burden of proof to motivating the criteria for
elimination and providing assurance that the true theory is among
those under consideration.

EI can also be defended indirectly as a consequence of an
independently well-tested theory, as in the standard account of it
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as a consequence of inflation reviewed briefly in Section 2 above.
This is a promising line of defense for multiverse theories, and is
immune to the argument of the previous two sections insofar as
(1) the case for the multiverse-generating theory does not itself
rest on anthropic predictions, and (2) the prediction of the multi-
verse follows directly from other aspects of the theory. Pursuing
both points in relation to inflation and EI leads into a thicket of
questions which I will take up in the next section.

8. Inflation and EI reconsidered

Conventional wisdom holds that EI is a natural consequence
of inflation. The empirical success of inflation, briefly reviewed in
Section 2 above, then offers indirect support for EI. In addition,
conventional wisdom also maintains that EI answers the initial state
problem of inflation, as I will explain below. Against this conventional
picture, I will argue that accepting EI undermines the original
empirical case in favor of inflation: the consequences of inflation are
demoted to anthropic predictions, subject to the critical arguments in
Sections 5 and 6 above. One way to avoid this unhappy result is to
sever the link between inflation and EI. The section ends by briefly
summarizing doubts about the case for EI, based on concerns about
extending theories beyond their domain of applicability.

EI is sometimes presented as the answer to inflation's own fine-
tuning problem.30 Inflation's original motivationwas to eliminate fine-
tuning in the standard big bang model, such as the horizon and
flatness problems. But rather than eliminating fine-tuning, inflation
apparently pushes it to a different aspect of the theory—namely, the
choice of the effective potential VðϕÞ and the initial state of the
inflaton field ϕ. The effective potential must satisfy various conditions
to produce an appropriate spectrum of density perturbations (in
standard slow-roll inflation). In order to trigger inflation, the field
must be in a uniform state over scales larger than the Hubble radius.31

Penrose (1986) argued on general thermodynamic grounds that the
initial conditions for inflation (granting an appropriate effective
potential) must in fact be less probable than the required initial state
of the standard big bang model (motivating the work mentioned in
Section 4.1; cf. Penrose, 2004, Chapter 28). In response to such
criticisms, advocates of EI invoke anthropic selection effects: the form
of the potential and the initial condition of the inflaton field at early
times must have been appropriate to trigger inflation in our region of
the multiverse, to set the conditions necessary for the existence of
observers.

Yet this reasoning, once it is accepted, allows for a more direct
response to the original fine-tuning problems motivating inflation.
As noted above in Section 6, in a standard FLRW universe with
infinite spatial sections, there presumably are regions on the scale
of the observed universe with the appropriate initial conditions for
the gravitational degrees of freedom. These regions may be
deemed “improbable” in some sense; but by parity of reasoning,
this is as irrelevant as the “improbability” of the initial state
required for ϕ. Taking anthropic selection into account, it is
plausible that these conditions are probable once we condition
on an appropriate anthropic subset A.32 Thus anthropic reasoning
can be used to pre-empt inflation, and it is unclear how an
advocate of inflation can draw the line between its legitimate

use (in the defense against inflation's initial conditions problem)
vs. an illegitimate pre-emptive strike.

More importantly, on this approach the “predictability crisis”
applies to the familiar “predictions” of inflation. The usual features
associated with the output of slow-roll inflation will only be
realized in some parts of the multiverse, and the objections above
to using anthropic predictions to establish theories apply. To be
clear, I take this to be an objection to a particular way of making an
empirical case for inflation, based on the solution of fine-tuning
problems in big bang cosmology. There is another position put
succinctly by Liddle and Lyth (2000, p. 5):

By contrast to inflation as a theory of initial conditions, the
model of inflation as a possible origin of structure in the
Universe is a powerfully predictive one. Different inflation
models typically lead to different predictions for observed
structures, and observations can discriminate strongly between
them. … Inflation as the origin of structure is therefore very
much a proper science of prediction and observation.

Here I do not have the space to address whether inflation “as a
theory of structure formation” can be subjected to empirical test, while
avoiding the concerns raised above regarding anthropic predictions.

These conclusions can be avoided if inflation does not in fact
lead to EI. Whether inflation leads to EI is a point of contention in
the physics literature. Generally the discussions of how EI arises
require extending calculations into regimes in which they may not
be reliable. Turok (2002), for example, offers a scathing criticism of
the stochastic approach to EI (p. 3459): “The calculations so far
presented to justify eternal inflation in fact break every known
principle in theoretical physics…” The stochastic calculations treat
the evolution of the inflaton field in a classical background space-
time and ignore the back-reaction of the fields on the spacetime.
This may be a useful approximation in the slow-roll regime of
inflation, but it is not clear that it leads to reliable results in the
fluctuation dominated regime studied in EI. Although I do not have
space to pursue the point here, the other ways in which inflation
can lead to EI similarly depend on extending existing theories into
new domains, where their reliability is doubtful.

9. Conclusions

Papers on EI routinely invoke successful anthropic predictions as
powerful evidence in its favor. But the rhetoric of predictive success
barely hides a number of pressing questions in foundations of physics
and methodology. Cosmologists acknowledge that the measure pro-
blem is a substantial obstacle to testing theories via anthropic
predictions (Section 4). I have argued that there are two further
obstacles, in Sections 5 and 6, respectively. The first is providing a
justification for introducing probabilities in this context, either in the
form of objective chances or as epistemic probabilities based on an
assumption of “typicality.” Second, the evidential value of anthropic
predictions is minimal: they may serve as a compatibility check for a
particular multiverse theory, but offer no hope of more detailed
constraints on the theory. An advocate of EI may take anthropic
predictions as a useful side benefit of EI rather than the main reason
for accepting it. There are four other arguments for EI, described
briefly in Section 7. Finally, the reasoning employed by advocates of EI
threatens to undermine the original case in favor of inflation, as
discussed in Section 8.

None of this goes to show that EI is incorrect; we may well live
in the EI multiverse. But anthropic predictions alone provide little
or no evidence that this is the case.

30 See, e.g., Linde's early discussions of chaotic inflation.
31 Vachaspati & Trodden (2000) show that inflation requires uniformity over a

super-Hubble-radius patch, granted several plausible assumptions; see Goldwirth
& Piran (1992) for a systematic review of the initial conditions problem for
inflation.

32 Note that this response will apply only to properties that vary across
different regions of the cosmological model; including, presumably, uniformity
and amplitude of perturbations but not the value of the cosmological constant Λ.
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