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1. Introduction

Quantum field theory (QFT) is one of the main pillars of
modern physics. Yet by comparison with other central areas of
physics it has received relatively little attention from philoso-
phers of physics.! Recently several scholars, notably including
younger scholars, have contributed to understanding the distinc-
tive foundational problems that arise in QFT. QFTs inherit the
traditional problems associated with quantum mechanics that
can be traced to the Hilbert space structure of the space of states
and unitary dynamical evolution. But there are distinctive pro-
blems that arise, for example, in considering the fate of particles
in QFT, the status of renormalization techniques, and the nature
of gauge and other symmetries. The University of Western
Ontario hosted a lively and stimulating workshop in the spring
of 2009 that brought together many of the philosophers actively
working on QFT. This issue collects some of the papers presented
at the workshop, along with one (Earman’s) that was intended for
the workshop but not presented there. These papers approach the
foundational problems of QFT from a variety of different technical
and philosophical perspectives.

One issue confronts the would-be interpreter of QFT at the
very beginning of her undertaking: what version of QFT is the
appropriate target of her research? A gulf separates axiomatic
treatments from the methods used by most working physicists.
And in this case the gulf is deeper than the usual divide between
physicists’ relaxed standards of rigor and the sophistication of the
mathematicians. History of physics offers several examples where
apparently quite different formulations turned out to be equiva-
lent versions of a single theory. But in this case it is clear that such
a reconciliation of different approaches cannot be easily achieved.
Conventional quantum field theory (CQFT) has accrued an
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impressive record of empirical success. This success initially came
at a price, namely reliance on “renormalization” techniques that
some of its most skilled practitioners regarded as “hocus-pocus”
Feynman, 1985, p. 128. Axiomatic QFT (AQFT) developed partly in
response to this unsatisfying state of affairs, reflected in Streater
and Wightman's “kill it or cure it” approach.?> They aimed to
formulate a set of well-motivated axioms and then assess
whether there are models of the axioms corresponding to the
CQFTs studied by physicists. There is not yet a clear verdict. The
question of whether there is a model of the axioms for an
interacting QFT in four dimensions remains open. Models have
been found for a variety of other cases — free field theories of
various kinds, interacting theories in dimensions other than
four — but there is still no AQFT model for successful CQFTs such
as quantum electrodynamics.

In pursuing the Carnapian goal of finding the appropriate
formal language in which to couch foundational and interpreta-
tive problems, many philosophers have sided with the mathema-
ticians and focused on AQFT. The papers by Doreen Fraser and
David Wallace debate whether this is an appropriate starting
point for foundational studies. They agree in characterizing AQFT
and CQFT as importantly distinct due to their different ways of
handling field degrees of freedom at arbitrarily small distances.
CQFT treats these as frozen out below a cut-off length scale,
whereas AQFT (in its algebraic variety) maintains Poincaré covar-
iance by assigning algebras of observables to arbitrarily small
spacetime regions.> Wallace regards the two as distinct research
programs embodying different responses to the problems posed
by renormalization, whereas Fraser characterizes the contrast in
terms of the distinctive theoretical principles the two approaches
employ. There is rough agreement that these are two competing

2 See Wallace’s paper, §3, for the full quotation from Streater & Wightman
(1964). Note that AQFT sometimes refers to axiomatic QFT generally (our usage),
and sometimes more specifically to algebraic QFT, the most well-developed
version of the axiomatic approach.

3 As both Fraser and Wallace note, this contrast will be clear for cases like
quantum electrodynamics, but not for an asymptotically free theory.
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theories or programs that present philosophers of physics with an
option when undertaking the interpretative project. But the
agreement ends there, with Fraser advocating AQFT and Wallace
CQFT as the proper focus for foundational work that “takes
particle physics seriously”.

Fraser appeals to the familiar language of the “no miracles”
argument and underdetermination in making a case for AQFT.
Empirical evidence is of limited value in making the choice
between AQFT and CQFT, given that a wide range of different
descriptions of the physics of short distance scales yields the
same empirical consequences at lower energies. She introduces a
new move in this debate, which we might call the “argument
from conceived near-alternatives” (contrasted with the argu-
ment from unconceived alternatives). AQFT is only a near-
alternative to CQFT because there are as yet no physically
realistic models of AQFT. Should such a model be found it would
be empirically equivalent to CQFT, in the sense of predicting the
same S-matrix elements, but embody different theoretical prin-
ciples. She then argues that the principles formulated in AQFT
are more well-motivated than those in CQFT, in the sense of
being firmly based on insights from relativity and non-relativis-
tic quantum mechanics. One should be wary of drawing founda-
tional conclusions based on CQFT while AQFT is waiting in the
wings, given that the hoped-for AQFT model would then be
clearly superior to existing CQFT models, and offer different
foundational insights.

Wallace’s position is that physicists have now achieved a
satisfactory understanding of renormalization, removing the main
impetus for the AQFT program. He briefly summarizes and
defends a modern understanding of renormalization based on
renormalization group techniques introduced by Kadanoff, Wil-
son, and others in the 1970s. On this view, QFT can be understood
in roughly the same way as condensed matter theory: there are
physical reasons to propose that the field degrees of freedom
“freeze out” below some sufficiently small length scale, the “cut-
off.” Renormalization group techniques establish that the pre-
sence of this cutoff will only be manifested in rescaling of the
parameters appearing in an effective Lagrangian describing lower
energy physics. Wallace, in direct response to Fraser, argues that
these ideas solve the problems facing earlier formulations of QFT
and provide a satisfactory understanding of its “theoretical
principles.” In §6, he poses a challenge to AQFT by highlighting
several signature successes of CQFT that can be directly traced to
this way of understanding renormalization. Finally, from Wal-
lace’s viewpoint the AQFT program involves an unwarranted
positive commitment regarding physics at arbitrarily small length
scales, contrasted with CQFT’s less hubristic agnosticism.

The central point of contention between Fraser and Wallace
regards the appeal to renormalization group techniques. Fraser’s
positive argument in favor of taking AQFT as the starting point for
foundational work is combined with a sustained critical assess-
ment of the implications of renormalization group techniques.
Against Wallace, she argues that although these methods help to
elucidate the empirical content of a QFT they do not resolve the
difficulties of CQFT. She further argues that the formal similarities
between the application of renormalization group techniques in
condensed matter theory and particle physics fail to underwrite
Wallace’s claim that there is a physical analogy. There are further
questions regarding the formulation of the debate in terms of
underdetermination. In what sense are the “theoretical princi-
ples” of QFT isolated from the empirical content of the theory, as a
result of the separation of scales that allow for the application of
renormalization group techniques? Why not instead take the
theoretical principles as manifested in the successful empirical
applications of QFT, and take on the project of isolating and
clarifying the content of these principles?

This capsule summary of the exchange hopefully conveys the
excitement and interest of the issues involved in this debate, and
Fraser and Wallace each make their case forcefully. Perhaps the
most striking contribution of this exchange is to focus attention
on what kind of project philosophers of physics are undertaking
in their reflections on QFT. Do philosophical projects demand a
higher level of rigor than the work carried out by physicists, and if
so why? What do philosophers gain, and what do they lose, by
focusing on AQFT rather than CQFT? How would the task of
interpreting CQFT differ from the task of interpreting other
physical theories?

Ruetsche’s paper focuses on an interpretative puzzle that
arises in considering quantum mechanics for infinite-dimensional
systems. In finite-dimensional quantum systems, a set of opera-
tors acting on a Hilbert space satisfying the canonical commuta-
tion relations that characterize the system is unique up to unitary
equivalence. But infinite-dimensional systems, such as those
studied in QFT and in the thermodynamic limit of quantum
statistical mechanics, admit unitarily inequivalent representa-
tions. There is no dispute about necessity of an algebraic approach
to investigate this aspect of QFT and the associated interpretative
questions. Ruetsche has explored other aspects of the existence of
unitarily inequivalent representations in earlier work, but here
she focuses on the status of non-normal states.

The algebraic approach employs a more general concept of
state than the familiar Hilbert-space based account of non-
relativistic QM. States are introduced as (positive, normed, linear)
functionals over the algebra of observables. Von Neumann alge-
bras, a specific type of algebra used in the representations of
global observables, come equipped with a topology that allows for
a further distinction: states that are continuous with respect to
this additional topology are called normal, and these correspond
to states that are countably additive. But, as Ruetsche explains,
non-normal states arise in various contexts in QFT and quantum
statistical mechanics. And what is the interpreter of QFT to do
with such states? Consider one of Ruetsche’s cases in which there
are reasons to treat them as physical states: the von Neumann
algebras associated with open, bounded regions of spacetime in
AQFT entirely lack pure, normal states — they are “atomless,” in
Ruetsche’s terminology. Pure states are the preferred vehicles for
representing quantum states due to their maximality, and this
preference cannot be satisfied unless ones allows non-normal
states to play a role. But, on the other hand, the non-normal states
have a variety of features that seems to preclude their admission
as physical. They are, roughly speaking, dynamically isolated in
the sense that a non-normal state cannot unitarily evolve into a
normal state. They also fail to instantiate lawlike relations, as in
Ruetsche’s simple example of a localized state drifting from one
point to another in a manner that is incompatible with Schrédin-
ger evolution.

Ruetsche’s aim is not to deliver a universal verdict regarding
the admissibility of non-normal states. Rather, she raises these
questions about the interpretative status of non-normal states as
part of an argument for a form of interpretative contextualism.
She suggests that it is a mistake to answer the interpretative
question in this abstract form without specifying the context in
which the formalism is deployed. In some contexts the non-
normal states may need to be pressed into use, despite their odd
features, whereas in others the same oddities may undermine
their utility.

The particle concept in QFT has been one focus of philosophical
discussions. Conventional wisdom in physics has long held that the
combination of quantum mechanics and special relativity yields a
field theory, in which talk of localizable particles is at best a facon de
parler for describing the interplay among fields. Philosophers have
recently contributed no-go theorems supporting this conventional
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wisdom Malament, 1996; Halvorson and Clifton, 2002. A crucial part
of these arguments has been clarifying how to represent “particles”
in the formalism. Intuitively particles are localizable — located in
some finite region — and countable. The no-go theorems show that
a theory of localizable, countable particles satisfying other natural
assumptions from relativity and quantum theory lead to absurd
consequences.

But have we smuggled in stronger assumptions than we
realized in the move from an intuitive particle concept to its
mathematical characterization? Bain reconsiders the no-go theo-
rems, using a comparison between relativistic and non-relativistic
QFTs to bring just such assumptions into view. One way of
introducing particles in QFT takes advantage of global structure
of the spacetime: given a global time function, one can construct a
Fock space equipped with total number operator. A unique,
preferred global time function implies the uniqueness of this
total number operator, underwriting the intuitive property of
“countability.” But the eigenstates of this total number operator
(states with a definite number of particles) are not eigenstates of
local operators. Localizability of particles further requires the
existence of local number operators that count particles within a
finite spacetime region. Bain shows that the no-go theorems do
not hold for non-relativistic QFTs, thanks to the saving grace of an
absolute temporal metric. The existence of this metric in Galilean
QFT insures that: there is a unique total number operator, the
differential operators appearing in the field equations are not
anti-local, the vacuum is not separating, and interactions do not
“polarize the vacuum.” The “intuitive” properties assigned to
particles in setting up the no-go theorems thus reflect the
lingering appeal of classical spacetime. Any attempt to formulate
a relativistic conception of “particle” should avoid these ways of
implementing “countability” and “localizability.”

Bain’s paper suggests two further projects. First, how should a
particle be characterized formally in order to avoid implicit
commitment to an absolute time metric? Second, what does the
empirical success of QFT actually require in terms of the particle
concept — to what extent can the usual treatment be replaced
with a different definition of “local particle states” that is
sufficient to underwrite the empirical content of QFT?

Bain’s paper contributes to a discussion of the status of stable
particles in QFT. Gordon Fleming, in his contribution, introduces a
host of interesting conceptual issues associated with unstable
particles — or, in the terminology preferred by Fleming, to avoid
unwanted baggage associated with the word “particle” —
unstable quantons.

An unstable quanton is one that has some probability of
decaying into some decay products, whose nature is determined
by what sort of quanton it is. In the framework employed by
Fleming, we start by supposing that the quanton is prepared in a
state such that, at some time (to speak, for the moment,
nonrelativistically), it is certainly in an undecayed state — i.e.,
there is zero probability that detectors for the decay products will
fire at that time. The state evolution takes it into a state that, at
later times, is a superposition of the undecayed state and a
decayed state. In Minkowski spacetime, rather than describing
the state as being an “undecayed state at some time,” the states
are described as “undecayed on some spacelike hyperplane.” If
the quanton is unstable, there can be at most one such hyper-
plane. In Fleming’s terminology, a single parent (SP) state is a state
for which there is some hyperplane, the no-decay hyperplane, on
which the quanton certainly exists alone with no decay-product
component.

As these states are unstable, they are not energy eigenstates.
This means that an unstable quanton does not have definite mass,
but, rather, has some mass distribution associated with it. Thus,
the simple relation between momentum and velocity that obtains

for particles or quantons of definite mass does not hold for
unstable quantons, and velocity and momentum eigenstates are
distinct. There has been some controversy in the literature about
whether momentum eigenstates or velocity eigenstates form a
more appropriate basis for the space of states.

Fleming sheds light on this controversy by examining the
relations between momentum and velocity eigenstates. Because
of spread in the mass spectrum, a Lorentz boost of an SP
momentum eigenstate is not, in general, a momentum eigenstate.
A Lorentz boost of an SP velocity eigenstate is an SP velocity
eigenstate, but the boost not only changes the velocity, but also
tilts the no-decay hyperplane. In fact, Fleming argues (§5), any SP
velocity eigenstate has a no-decay hyperplane that is orthogonal
to its 4-velocity (see also Fleming, 2009, §3). This means that any
two velocity eigenstates with distinct velocities have distinct no-
decay hyperplanes, and a non-trivial superposition of such states
has no no-decay hyperplane at all; it is not an SP state. Fleming
uses these considerations to clarify the significance of a claim by
Shirikov that velocity eigenstates suffer lifetime contraction,
rather than dilation, under boosts. Fleming also considers the
momentum-dependence of lifetime of momentum eigenstates
(which, it should be stressed, is not the same as dependence on
reference frames, because, for unstable quantons, Lorentz boosts
of momentum eigenstates are not momentum eigenstates), and
demonstrates that this dependence exhibits a simulacrum of time
dilation.

A distinct set of problems for the particle concept arises in
considering curved spacetimes. As a kind of warm-up to defining
QFT on a curved spacetime suitable for general relativity, one can
construct an interesting QFT in Minkowski spacetime by restrict-
ing consideration to the “Rindler wedge.” Studying this construc-
tion led Unruh to the striking discovery that an observer
accelerating in flat space would see the Minkowski vacuum state
as a thermal state with a temperature that depends on their
acceleration. This result, now called the Unruh effect, stimulated a
large literature in mathematical physics because it sits at the
intersection of QFT, relativity, and thermal physics.

Earman’s paper elucidates various ideas that have emerged in
the study of the Unruh effect. But he characterizes the existing
treatments of the effect as something like an incomplete jigsaw
puzzle; even with a number of interlocking pieces in place, the
gaps in the puzzle leave us without a complete picture of the
effect. One approach to the Unruh effect starts by considering the
vacuum state of Minkowski spacetime from within the QFT
constructed by accelerated observers confined to the “Rindler
wedge” (the Fulling representation). The accelerated observers
will “see the Minkowski vacuum as a thermal state” with an
acceleration-dependent temperature. Earman is most critical of
this approach, which despite its heuristic value faces well-known
obstacles — the Minkowski vacuum state cannot be forced into
the Fulling representation, and it cannot be shown in this
approach that the allegedly “thermal state” is a KMS state, the
precise definition of an equilibrium thermal state. Earman further
argues that the Fulling vacuum should be ruled physically inad-
missible given that it cannot be extended to a non-singular state
on the global algebra of observables. A second approach starts
from the characterization of KMS states and the ideas of “modular
theory.” Earman provides a crash course in modular theory and its
application to the Unruh effect, but he is unsatisfied with taking
the Unruh effect to only consist of a set of theorems linking
modular automorphisms, geometric actions, and KMS states. His
main objection is that applying modular theory requires global
assumptions, and this seems different in character than other
idealizations employed in physics. Whether my steak is rare
or well-done as a result of Unruh grilling depends on its
entire history, on this approach, rather than any finite part of its
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trajectory. Thus it is unclear how to extend the sense of “thermal”
employed in modular theory to the thermal properties of radia-
tion as experienced by a particular observer. The final interlocking
approach starts from an operational treatment of particle detec-
tors. Here Earman argues, based on a review of some ways of
modeling particle detectors in the literature, that the Unruh effect
threatens to fracture into different effects corresponding to
different detectors, unless a “privileged class” of detectors is
singled out as the ones that accurately register the thermal
properties of quantum fields.
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