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Abstract

This dissertation gives an original account of the historical development of modern cos-
mology along with a philosophical assessment of related methodological and foundational is-
sues. After briefly reviewing the groundbreaking work by Einstein and others, I turn to the
development of early universe cosmology following the discovery of the microwave background
radiation in 1965. This discovery encouraged consolidation and refinement of the big bang
model, but cosmologists also noted that cosmological models could accomodate observations
only at the cost of several “unnatural” assumptions regarding the initial state. I describe various
attempts to eliminate initial conditions in the late 60s and early 70s, leading up to the idea that
came to dominate the field: inflationary cosmology. I discuss the pre-history of inflationary cos-
mology and the early development of the idea, including the account of structure formation and
the introduction of the “inflaton” field. The second part of my thesis focuses on methodological
issues in cosmology, opening with a discussion of three principles and their role in cosmology:
the cosmological principle, indifference principle, and anthropic principle. I assess appeals to
explanatory adequacy as grounds for theory choice in cosmology, and close with a discussion of
confirmation theory and the issue of novelty in relation to cosmological theories.
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Nature, we find, even from our limited experience,
possesses an infinite number of springs and prin-
ciples, which incessantly discover themselves on
every change of her position and situation. And
what new and unknown principles would actuate
her in so new and unknown a situation as that of
the formation of a universe, we cannot, without the
utmost temerity, pretend to determine.

David Hume

Cosmologists are often in error, but never in doubt.
Lev Landau
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Chapter 1

Introduction

Historians and philosophers of science have paid relatively little attention to modern cos-

mology, in contrast to both the substantial scholarly literature concerning the cosmologies of

earlier eras and research focused on other developments in 20th century physics. The contro-

versy between the steady state and big bang models–with its overt focus on methodological

and philosophical issues–spilled over into the philosophy of science literature in the 50s and

60s, but more recent developments have for the most part not drawn the attention of historians

and philosophers. Partly this is due to the increasing size and technical sophistication of the

research literature in cosmology, and other areas within physics have established traditions de-

voted to their history and philosophical implications. In broad terms, the aim of this dissertation

is to correct this oversight, and to provide some indication of the riches awaiting historians and

philosophers who turn their attention to cosmology. As with any early exploration, I follow an

idiosyncratic path that colors my sense of the lay of the land, and I am keenly aware of the un-

explored territory surrounding the topics I have chosen to focus on. This introductory chapter

surveys the historical development of cosmology and attendant methodological debates leading

up to the mid-1960s, where the account starting in Chapter 2 begins. The introduction closes

with a brief overview of the dissertation.
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1.1 Einstein and Cosmology

Prior to Einstein’s groundbreaking paper (Einstein 1917), cosmology was hardly an area

of active concern for physicists. Newton briefly discussed the application of his gravitational

theory to a “cosmological” matter distribution in response to Bentley’s prompting, but this line of

thought—and the attendant serious conceptual difficulties with applying Newtonian gravitational

theory to an inifinite distribution of matter—was explored by only a handful of scientists from

Newton’s time up to the 20th century.1 In this section I will briefly assess Einstein’s motivations

for proposing a cosmological model. I will argue that Einstein is the first in a long line of

physicists pushed to cosmological speculations by purely theoretical concerns, and I will also

criticize the common characterization of Einstein (1917) as a straightforward application of his

newly completed theory. Einstein (1917) should be seen instead as a continuation of the road

leading to general relativity.2

After several years of struggling to reconcile Newtonian graviational theory with special

relativity, Einstein’s work built to a crescendo in November of 1915. He delivered papers on the

general theory of relativity to the Prussian Academy on four consecutive Thursdays. Following

what was surely one of the most stenuous months of work in his life, he considered his task com-

plete with the presentation of the final paper on November 25.3 He had successfully formulated

a field theory of gravitation that apparently satisfied the formal and physical requirements which

had guided his long search for a new theory.

1See North (1965); Norton (1999) for discussions of the difficulties in formulating Newtonian
cosmology.

2Discussions with Michel Janssen have been a great help in understanding Einstein’s early work on
cosmology and the Einstein-de Sitter correspondence, and I owe much of what follows to those discus-
sions; cf. Torretti (2000).

3Einstein lays out the story of the twists and turns leading to the final paper in a detailed letter to
Sommerfeld written just three days later (Schulmann et al. 1998, Doc. 153).
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Thanks to extensive, careful historical work by a number of scholars, we now have a thor-

ough understanding of these requirements and how Einstein arrived at the final field equations.4

From his earliest work on gravitation (Einstein 1907), Einstein thought that any extension of the

principle of relativity to accelerated systems must incorporate the striking empirical equality of

inertial and gravitational mass. He initially formulated the equivalence principle, described as a

generalization of the principle of relativity to accelerating reference systems, as the claim that a

gravitational field is physically equivalent to uniform acceleration.5 Eight years later, the prin-

ciple amounted to the claim that there is no background inertial structure in spacetime; instead,

inertial and gravitational effects are both consequences of the metric field, and they cannot be

disentangled from each other. Two additional crucial requirements were that the theory incorpo-

rate an energy-momentum conservation law, and that the field equations reduce to the Newtonian

form in the limit of weak, static fields.6 The series of papers in November reveal that Einstein’s

breakthrough came in part by finally rejecting a number of erroneous assumptions regarding the

Newtonian limit. He abandoned the field equations of an earlier theory (the so-called Entwurf

theory) and renewed the search for generally covariant field equations. (Einstein 1916 character-

ized general covariance as the requirement that “the universal laws of nature must be expressed

by equations which hold good for all coordinate systems, that is, are covariant with respect to

arbitrary transformations.”) The field equations presented on Nov. 25 appeared to satisfy all

4Norton (1984) (drawing on earlier work of John Stachel) is the canonical shorter account of Ein-
stein’s path to general relativity, soon to be supplemented with an authoritative book-length treatment,
Renn et al. (2003). It goes without saying that there are a number of remaining questions regarding the
intricate conceptual and technical issues Einstein struggled with before (and after) finding the “final” field
equations (such as Einstein’s understanding of “coordinate conditions”). Hopefully Renn et al. (2003)
will mark out the common ground shared by its contributors, and also clarify the remaining disputes.

5This rough formulation follows Einstein’s remarks in §17 of Einstein (1907). See, e.g., Norton
(1985); Torretti (1983) for more detailed discussions of the equivalence principle.

6For a clear reconstruction of how the requirement of energy-momentum conservation came into play,
traced through the pages of Einstein’s Zurich notebook, see Norton (2000).
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of Einstein’s guiding principles: they upheld the equivalence principle; they had an appropriate

Newtonian limit, but also gave correct predictions for departures from Newtonian theory, notably

the value of Mercury’s anomalous perihelion motion; they incorporated energy-momentum con-

servation; and, finally, they were generally covariant.

But as a consequence of discussions and extensive correspondence with the Leyden as-

tronomer Willem de Sitter beginning in 1916, Einstein soon realized that the field equations did

not satisfy an additional guiding principle. He added “Mach’s Principle” to the list of founda-

tional principles of general relativity:7

The metric field is determined without residue by the masses of bodies. Since mass
and energy are equivalent according to the results of the special theory of relativity,
and since energy is formally described by the symmetric energy tensor Tij , this
means that the metric field is conditioned and determined by the energy tensor.
(Einstein 1918b, p. 242, original emphasis)

Einstein explicitly added this principle to the short list after recognizing that it might not hold in

his newly minted theory. In particular, boundary conditions imposed at infinity could play a role

(alongside the distribution of matter and energy) in determining inertial structure. For Einstein

this was contrary to the spirit, if not the letter, of his theory; he put the complaint as follows in

1917:

In a consistent theory of relativity there can be no inertia relative to “space” but
only an interia of masses relative to each other. Hence if I take a mass sufficiently
far away from all the other masses in the world its inertia must fall down to zero.
(Einstein 1917, p. 145, original emphasis)

7This is the third and final foundational principle, following the principle of relativity and the principle
of equivalence. Norton (1993, §3) describes the evolution of these principles in Einstein’s thought leading
up to GTR and through the debates with de Sitter.
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Requiring that the metric field approaches the flat Minkowski metric far from all concentrations

of matter would introduce inertia relative to this flat background, which is apparently completely

independent of the matter distribution.

Einstein first suggested that this remnant of “absolute space” could be disposed of by

stipulating that the metric take degenerate values at infinity. The flat Minkowski values of the

metric field at finite but large distances were to be explained via “distant masses.” Einstein

soon abandoned this proposal (see Einstein 1917 and the de Sitter correspondence, included in

Volume 8 of the Collected Papers, Schulmann et al. 1998) in favor of a much more radical

solution: why not get rid of infinity entirely! Einstein’s bold suggestion was that space could be

unbounded yet finite. In modern terms, Einstein’s cosmological model is topologically R × S 3;

it can be naturally decomposed into surfaces at constant “cosmic time,” which are compact and

homeomorphic to S3. Each of these constant time slices is finite, and the need to stipulate

boundary conditions is avoided since there are no boundaries. Einstein is very clear regarding

his motives for introducing the model: he calls the model “nothing but a spacious castle in the

air,” built to accomodate Machian intuitions rather than observations (Schulmann et al. 1998,

Doc. 311).

The castle in the air came at a price: Einstein was forced to modify his final field equa-

tions from November of 1915 since they did not admit this cosmological model as a solution.

However, the model was a solution of the modified field equations:8

Rab −
1

2
Rgab + Λgab = κTab (1.1)

8Einstein wrote down the field equations in the following form, mathematically equivalent to the
equation stated in the text: Rµν = κ(Tµν − 1

2Tgµν) + Λgµν , where T is the trace of Tµν .
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This equation specifies the relationship between the distribution of matter and energy (the right

hand side) and spacetime geometry (the left hand side). Very briefly, in Einstein’s theory space-

time is modeled by a four-dimensional manifold equipped with a metric, gab.9 The metric defines

the geometry of spacetime, in that the distance between two neighboring points xa and xa +dxa

is given by ds2 = gabdxadxb. The quantities appearing on the left hand side of (1.1)—the Ricci

tensor Rab, and the Ricci scalar R—are both defined in terms of the metric and its first and sec-

ond derivatives. The constant κ = 8πG/c4 (although I will adopt geometric units below, setting

G = c = 1), Tab represents the distribution of stress and energy, and Λ is the new “cosmological

constant” term which was absent from the original field equations. Although Einstein would later

call the introduction of Λ his “greatest blunder,” the modified field equations share the virtues of

the original equations. Indeed, the left hand side of (1.1) is the most general symmetric tensor

that can be constructed from the metric and its first and second derivatives, such that the covari-

ant conservation law for Tab is still satisfied. Even for those who didn’t share Einstein’s fine

aesthetic sense (he later commented that Λ damaged the formal beauty of the field equations),

observational constraints provided ample evidence that Λ must be very close to zero.10 These

constraints have not prevented cosmologists from re-introducing Λ again and again for various

reasons, as we will see below.

Einstein was driven to cosmological speculation not by a desire to model the universe

as a whole, but by the hope of showing that his new theory incorporated the Machian intuitions

that had been so important in guiding his research. Observations are mentioned only once in

9See A.1 for definitions and a brief discussion, or for a more comprehensive introduction to GTR, see,
e.g., Misner et al. (1973); Wald (1984). For consistency with later work I have written the field equations
using the modern “abstract index notation” introduced in the late 60s: the indices appended to a tensor
characterize the tensor, not its components in a particular basis, whereas in the old notation Tµν represents
the components of a tensor in a given basis. Throughout the dissertation I will use a (-+++) signature.

10See, e.g., Weinberg (1989) for a contemporary review of observational constraints on Λ.
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Einstein (1917): Einstein supports his suggestion that the universe is static by noting the small

relative velocity of the stars. In this context “static” means that the metric does not change

over time; as a consequence, in Einstein’s model the distance between curves traced out by

freely falling particles is fixed. Any one of the “time slices” of Einstein’s model is equivalent

to another. This assumption is what actually forced Einstein’s hand: as he explicitly noted, one

might be able to construct non-static cosmological models with Λ = 0 (Einstein 1917, p. 152).

Friedmann would later show that there are dynamical models with Λ = 0 that have closed spatial

sections, as in Einstein’s model. Thus the modification of the field equations was not necessary

for preserving Mach’s Principle by eliminating boundaries at infinity. The introduction of Λ

was also not sufficient for preserving Mach’s Principle, as Einstein’s correspondent de Sitter

showed with a slight modification of Einstein’s model. Although the de Sitter solution is a

vacuum solution, its inertial structure differs from that of flat Minkowski space; it is thus a

straightforward counterexample to Mach’s Principle (as Einstein formulated it).

In an extended epistolary exchange involving de Sitter, Klein, and Weyl from late 1916

to early 1919, Einstein suggested various reasons to rule out de Sitter’s solution as physically

inadmissible and thus preserve Mach’s Principle.11 His early criticisms focused on an appar-

ent singularity in the de Sitter solution: Einstein argued that the divergence of the metric at the

“equator” of the de Sitter solution represented a true singularity (Einstein 1918a).12 Correspon-

dence with Klein eventually convinced Einstein that this singularity is due to the use of static

11The debate is played out in a series of letters between Einstein and de Sitter from November 1916
to April 1918, with Einstein discussing related issues with Klein and Weyl until 1919; see, in particular,
Michel Janssen’s thorough editorial note “The Einstein-de Sitter-Weyl-Klein Debate” (Schulmann et al.
1998, pp. 351-357).

12In the static coordinates used by de Sitter (1917b), the “equator” is the hypersurface given by r = π
2 R,

and at that point the gtt component of the metric vanishes. As subsequent work clarified, the apparent
singularity corresponds to the event horizon (see, in particular, Schrödinger 1957). See the headnote
referred to above for a discussion of Einstein’s other objections.
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coordinates, which only cover a portion of the full de Sitter space; the bad behavior of the met-

ric on the equator reflects this poor choice of coordinates rather than any real singularity in the

spacetime. When eventually forced to admit that this criticism was misplaced, Einstein retreated

to the position that the de Sitter solution could not be accepted because it was not static. Einstein

had earlier argued in favor of a static model on the slim observational basis that the velocities

of the stars appears to be small (Einstein 1917), but rather than leading him to reconsider this

assumption the exchange appears to have reinforced his conviction that a physically reasonable

solution of the field equations must be static.

de Sitter did not share Einstein’s concerns with preserving Machian insights, but he im-

mediately studied possible observational consequences of the speculative cosmological models.

This was fully in character: long before Einstein’s successful completion of the general theory,

de Sitter (1911) calculated the astronomical consequences of early work on Lorentz covariant

gravitational theories (by Poincaré and Minkowski). de Sitter served as an “ambassador” for

relativity theory in two different respects: he brought the new theory to the attention of the as-

tronomical community through a series of publications on GTR (de Sitter 1916a,b, 1917a), and

he published in English journals accessible to astronomers and physicists in England and Amer-

ica during the war. de Sitter’s articles shaped the ensuing debate regarding the status of these

cosmological models. In particular, he emphasized one striking observational consequence: a

systematic red-shift of the spectral lines of distant stars or nebulae in his own model. By 1930

Eddington, Weyl, Jeans, de Sitter, Hubble, and a handful of others had been drawn into a debate

weighing the virtues and vices of Einstein’s static model and the de Sitter solution, on obser-

vational as well as theoretical grounds. One focus of the debates was the interpretation of the
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redshift in de Sitter’s solution. From the line-element for the de Sitter solution in static coor-

dinates it was clear that free particles at rest would move apart, and de Sitter correctly argued

that as a result spectral lines from distant stars or “nebulae” would be systematically red-shifted

(de Sitter 1917a). However, determining whether this was a real or “spurious” effect, as well as

the dependence of this redshift on distance from an observer, required differentiating different

causes of redshift from coordinate effects. The failure to do so led to a decade-long debate re-

garding the nature of redshift in de Sitter’s solution.13 The Einstein vs. de Sitter debate did not

end with a firm resolution in favor of either model; instead, the participants belatedly recognized

that there were many other models to choose from, as we will see in the next section.

These early debates regarding cosmological models reflect two general problems: first,

the difficulty in separating artifacts of particular coordinate representations from genuine phys-

ical features of the models, and second, deciding what general features should be required of

“physically reasonable” models. The debates described above led to some progress on the first

question: by the mid 1930s there was broad agreement regarding the genuine physical features

of various cosmological models (see, e.g. Tolman 1934), although other issues such as the na-

ture of singularities proved to be far more subtle (see §5.2). Regarding the second issue, Einstein

insisted that a physically reasonable cosmological model should be both static and singularity

free. The use of strong and intuitively clear principles to delimit the space of reasonable models

continued to be a mainstay of arguments in cosmology. But partially due to de Sitter’s influence,

over the course of the 20s qualitative agreement with observational results began to play a more

important role in judging the merits of cosmological models.

13For a blow-by-blow recounting of the debates see North (1965, pp. 92-104), but for a clear description
of the different causes of redshift that dispels the confusion see Ellis (1989).
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1.2 Evolutionary Cosmology

This section briefly reviews some of the developments in cosmology in the five decades

after Einstein’s seminal paper, focusing on homogeneous and isotropic models, the study of

galaxy formation via gravitational clumping, and Gamow’s theory of “big bang” nucleosynthe-

sis. These three ideas were later incorporated into what Steven Weinberg dubbed the “standard

model” of big bang cosmology (Weinberg 1972), but it is important to emphasize that in text-

books and review articles from the late 50s and early 60s they were not presented as a coherent,

unified theory. Gamow’s ideas, for example, entirely disappeared from view, so completely that

in 1965 Peebles was unaware of work of Gamow and his collaborators until a referee for Phys-

ical Review rejected his paper on nucleosynthesis on the grounds that it repeated their results.14

There is a striking contrast in approach between Gamow’s application of particle physics to the

early universe, various attempts to account for galaxy formation, and more mathematical studies

of the features of sundry cosmological models (such as Schrödinger 1957). A richer historical

account of these ideas would take up the interactions (and lack thereof) between such different

approaches to cosmology, along with their relation to the controversial steady state theory, which

a vocal minority advocated as an alternative to evolutionary theories.15 Since my main goal is

to set the stage for the more detailed history to follow, I will instead give only a quasi-historical

introduction to these components of big bang cosmology.

14See Kragh (1996) §7.1 for this anecdote and more detail on the revival of research on nucleosynthesis,
and Chapter 3 for a detailed treatment of Gamow’s theory.

15There are several historical accounts covering this period: Kragh (1996); North (1965); Ellis (1989,
1990). George Gale and his frequent collaborator John Urani have also written a number of papers on the
development of cosmology from the 20s to the 40s, with an explicit focus on the methodological debates
that shaped the emerging science (see Gale 2002, for references).



11

Following Einstein’s work described above, study of the large-scale structure of the uni-

verse and its dynamical evolution has been primarily based on exact solutions of Einstein’s field

equations (EFE). Most exact solutions bear the name of whoever possessed the mathematical

insight or determination needed to find them. The daunting task of solving the field equations

(in a particular coordinate system, they are generally a set of 10 coupled, non-linear partial dif-

ferential equations) can be simplified considerably by making strong symmetry assumptions,

and in the 20s several authors discovered a set of solutions which have been used extensively

since their re-discovery in the early 30s. This set of solutions, called the Friedmann-Lemaı̂tre-

Robertson-Walker (FLRW) solutions, includes all homogeneous and isotropic solutions of the

field equations.16

Homogeneity and isotropy characterize the geometric features of spacetime as seen by

stationary observers. Robertson (1929) introduced these concepts as follows. He first assumed

that spacetime may be divided into three-dimensional spaces labeled by a set of coordinates x
i

with i = 1, 2, 3 and a single time dimension. This is equivalent to the requirement that in suitable

coordinates the line element has the form

ds
2

= −dt
2
+ hijdx

i
dx

j
(1.2)

(hij is the metric of the three-dimensional surfaces). Suppose that in addition we consider a

specialized set of “comoving” coordinates x
i, defined such that the matter distribution is at rest

16These solutions are also often referred to as the FRW or RW models. Friedmann and Lemaı̂tre
independently derived the dynamics of the FLRW models by solving (1.1) with particular matter sources
along with assumptions regarding the overall geometry (see Torretti 1983, §6.3), whereas Robertson and
Walker showed that equation (1.3) below is the general expression of the metric for a homogeneous and
isotropic model. The difference in these approaches is quite striking. Gale (2002) has recently pointed
out that Robertson and Walker’s approach was heavily influenced by Milne’s kinematic relativity.
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with respect to these coordinates—i.e., the matter moves along geodesics with x
i

=constant.

Robertson (1929) characterized isotropy as the requirement that all spatial directions should

“look the same” to any observer at rest with respect to the comoving coordinates. Such an

observer cannot find a preferred spatial direction based solely on the geometry of spacetime. On

the other hand, in a homgeneous spacetime different points on the same three dimensional space

all “look the same” geometrically—at a given instant in time, all the different spatial points are

geometrically equivalent. Resorting briefly to more familiar terminology, these concepts can be

defined in terms of the isometries of the spatial metric. In an isotropic spacetime, the spatial

sections are symmetric around a comoving observer; more precisely, for such an observer at the

point p, any vector orthogonal to u
a, the tangent to the observer’s worldline at p, can be mapped

into another orthogonal vector v
a by an isometry of the metric hij . Isotropy characterizes the

three-space orthogonal to u
a at a single point; in contrast, homogeneity is defined with respect to

a foliation of spacetime into spacelike surfaces. A spacetime is spatially homogenous provided

that such a foliation exists and any point on a given spatial surface can be mapped into any other

point on the same surface by an isometry of the metric.

These two properties taken together place very tight constraints on the full metric gab.

The constant time hypersurfaces are maximally symmetric—that is, they are three dimensional

spaces with constant curvature. As Robertson (1929) showed, the general form of the line ele-

ment for FLRW solutions is:

ds
2

= −dt
2
+ a(t)

2

(

dr
2

1 − kr2 + r
2
(dθ

2
+ sin

2
θdφ

2
)

)

(1.3)
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The factor k classifies the three distinct possibilities for the curvature of the three-spaces: pos-

itive, k = +1 corresponding to spherical space; zero for flat space; and negative curvature

(k = −1) corresponding to hyperbolic space. Although the curvature of a given spatial surface

is constant, the curvature may change with time—as signaled by the presence of the scale factor

a(t), which measures the change over time of any selected length scale, such as the distance

between neighboring galaxies at rest with respect to the comoving coordinates.

For such geometrically simple spacetimes solving EFE is a relatively straightforward

calculation rather than a mathematical nightmare. The only matter source compatible with the

symmetries of the FLRW solution is that of a perfect fluid, i.e. Tab = (ρ+p)vavb+pgab. Solving

(1.1) yields two independent equations governing the time evolution of the scale factor (where

ȧ =: da
dt ) (cf. Appendix A.2):

ä

a
= −4π

3
(ρ + 3p) +

Λ

3
(1.4)

(
ȧ

a

)2

= − k

a2 +

(
8π

3

)

ρ +
Λ

3
. (1.5)

With the cosmological constant set to zero, the evolution of the scale factor depends upon the

choices of ρ, p, k; the equation of state for different states of matter fixes the values of ρ and p, but

the value of k depends upon the overall matter density of the universe. The stress-energy tensor

for “normal” matter and energy obeys the following inequalities: ρ ≥ 0, ρ + 3p ≥ 0.17 With

Λ set to zero, these inequalities imply that the first term on the RHS in equation (1.4) is strictly

17I am assuming that “normal” matter satisfies both the strong and weak energy conditions. The weak
energy condition requires that any observer moving with a velocity v

a measures a non-negative energy
density: Tabv

a
v

b ≥ 0, whereas the strong energy condition holds that Tabv
a
v

b ≥ 1
2T for any timelike V

a

(for a perfect fluid, this implies that ρ + 3p ≥ 0). The standard terminology here is misleading, since the
strong energy condition does not imply the weak energy condition. Attitudes towards energy condition-
violating fields have changed considerably with the realization that various classical and quantum fields
violate both of these conditions.
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negative, and it follows that ä < 0; the expansion of the universe decelerates (for any choice of

k). In addition, from (1.5) the velocity of the expansion can change from positive to negative if

and only if k = 1; for k ≤ 0 the right hand side of (1.5) is strictly positive, and the expansion

does not halt. This remarkably direct argument shows that the simplest cosmological solutions of

EFE are inherently dynamical: as long as the stress-energy tensor obeys the constraint above, the

scale factor evolves over time with ä < 0. Predilections for a static cosmology can be satisfied

by allowing a non-zero Λ, following the example of Einstein (1917). In a vacuum solution

with a non-zero cosmological constant, the right hand side of (1.4) is positive if Λ > 0, and

consequently ä > 0. Thus in contrast to “normal” types of matter and energy, the cosmological

constant produces a repulsive force that counteracts the attraction of gravitation. Setting ä = 0

in equation (1.4) to obtain a precise balance between repulsion and attraction implies that Λ =

4π(ρ + 3p).

Friedmann and Lemaı̂tre’s work was virtually ignored throughout the 20s, while debates

in observational cosmology focused exclusively on the Einstein and de Sitter solutions.18 There

were theoretical and observational reasons for abandoning the static models. Hubble’s famous

observations of a linear relationship between red-shift and distance provided strong evidence in

favor of expanding models. Furthermore, Eddington realized that Einstein’s solution is unstable

to slight variations in the value of Λ (Eddington 1930).19 de Sitter’s solution could apparently

accomodate the red-shift observations, but it is a vacuum solution. (Although the de Sitter solu-

tion is not a static solution, it was often written in a static form by choosing coordinates that only

18Einstein (1922)’s claim that Friedmann’s solutions were incompatible with EFE must have damped
interest in them, and his retraction a year later probably did little to revive it.

19Eddington did not immediately discard Einstein’s solution due to instability; instead, he suggested
that the universe may have evolved from the unstable Einstein solution to the de Sitter solution.
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cover a portion of the space.) In Eddington’s memorable question to the Royal Astronomical

Society in 1931: “Shall we put a little motion into Einstein’s world of inert matter, or shall we

put a little matter into de Sitter’s Primum Mobile?” Following the meeting, Lemaı̂tre notified

Eddington of his earlier work, ending the neglect of the FLRW models.

The utility of the simple FLRW models depends upon whether the universe is even ap-

proximately homogeneous and isotropic. The status of the “cosmological principle” (Milne’s

term for the assumption that the universe is homogeneous and isotropic) differed widely among

the cosmologists working during the time period from the late 30s to the 60s. Bondi, Gold, and

Hoyle followed Milne’s deductive approach and amplified the cosmological principle to include

uniformity over time, calling it the “perfect cosmological principle”. The enhanced principle

was then used to derive the steady state theory.20 Both Milne and the steady state theorists

held that these cosmological principles could be given strong a priori justifications of a purely

philosophical nature.

The cosmological principle was one of the focal points of lively, often downright vicious,

debates among cosmologists in the 30s and 40s.21 Despite agreement regarding the content of the

cosmological principle, its status varied widely. In Milne’s hands it was the consequence of an a

priori requirement that every observer in the universe should see the same cosmos. In contrast to

this deductive style, Robertson and others sought to justify uniformity as a useful extrapolation of

observed regularities. But the nature of this extrapolation was unclear; for example, Robertson’s

colleague at Caltech Richard C. Tolman was wary of the unrelenting uniformity built into the

20I will discuss the methodological stance of the steady state theorists in slightly more detail below, but
see Kragh (1996), Chapter 2 et passim and North (1965) for historical accounts of the development of the
steady state theory and the the controversy between this theory and rival evolutionary models.

21See Gale (2002) for a wonderful account of these debates (and references to related work). Gale
corrects a serious oversight of previous accounts by clarifying Milne’s influence on Robertson and Walker,
as well as on Bondi and the steady state theorists.



16

FLRW solutions. On Tolman’s view, the cosmological principle was an assumption valuable for

mathematical reasons, justified only indirectly by its apparent compatibility with observations.

Introducing a discussion of the FLRW solutions in his influential textbook (Tolman 1934), he

commented that:

...although we shall make great use of homogeneous models in our studies, we shall
have to realize that we do this primarily in order to secure a definite and relatively
simple mathematical problem, rather than to secure a correspondence with known
reality. (Tolman 1934, p. 332)

Tolman re-emphasized this point eloquently in his concluding remarks:

[W]e must be careful not to substitute the comfortable certainties of some simple
mathematical model in place of the great complexities of the actual universe. (Tol-
man 1934, p. 487)

This sentiment was echoed by several cosmologists working in America, notably George McVit-

tie.22 Significant observational results such as the linear relationship between the red shift of the

spectral lines of galaxies and their distance, the similarity of galaxy distributions in different

directions, and the number counts of galaxies and radio sources could all be accomodated (at

least qualitatively) in the FLRW models. This set the FLRW models apart from the other known

exact solutions of EFE, even as more exact solutions were discovered.

Although the unrelenting uniformity of the FLRW models conflicts with the non-uniformities

of the local universe, from the mid 30s onward cosmologists generally assumed that at large

enough scales these non-uniformities would disappear. In 1934 observational evidence for ho-

mogeneity on large scales was limited to a distance of about 10
8 light years. Hubble initiated

22McVittie left Britain for the Illinois observatory at least partially to escape the intellectual climate
of British cosmology, and in his textbook McVittie (1965) he characterizes the arguments in support of a
deductive approach as “largely illusory” (p. 187), and comments that: “If therefore the uniform models...
are employed in the interpretation of astronomical data, the reason lies not in necessity, but because these
models appear to provide the simplest first step that can be taken.”
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an observational program (working with Humason) to measure the uniformity of the large scale

distribution of nebulae (galaxies) in 1926, and throughout the 30s several theorists including

Tolman invoked Hubble’s observational data to bolster the assumption of homogeneity (see Tol-

man 1934, §177-185). However, Hubble’s conclusions were challenged by other observers, most

prominently Shapley, who disagreed about the significance of small scale clumping in the dis-

tribution of galaxies.23 Hubble acknowledged the presence of this clumping, but he argued that

at sufficiently large scales the distribution was indeed uniform. Observational evidence gathered

throughout the 50s and 60s did not settle the question.24 Although the observational evidence did

not fully vindicate the focus on the FLRW models, it also did not force cosmologists to abandon

the comfortable certainties of these simple models. In an extensive review of the observational

tests of cosmology within the reach of the 200 inch Hale telescope (then under construction),

Sandage (1961) focused almost exclusively on deciding which of the three FLRW solutions or

the steady state theory most accurately models the universe. By this point, the focus of observa-

tional cosmology (at least as Sandage practiced it) had shifted to measuring important parameters

characterizing the FLRW models (as the title of Sandage 1970 has it: “Cosmology: A search for

two numbers”) rather than testing the applicability of these models.25

However, two significant limitations of the FLRW models were widely acknowledged.26

The first was mentioned by Tolman: the great complexity of the universe could be manifested

in a breakdown of symmetry in the early universe. Tolman studied the approach to an infinite

23See the first chapter of Peebles (1980) for a brief review of this debate.
24Indeed, the most recent data on galaxy counts indicates the presence of structure on the largest scales.

For a recent review, see Peacock (1999), Chapter 13.
25The two numbers are the values of the Hubble “constant,” H = ȧ(t)

a(t) , and Ω0 = ρo

ρcrit

where ρcrit =

3H
2

0

8π in geometric units. The subscripts indicate that the quantities in question are evaluated at the present
time t0.

26Anderson (1967) §14-8 gives a very clear discussion of both problems.
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density “singular state” in a closed FLRW solution in some detail, and he concluded that the

idealizations of the model fail to hold as the singular state is approached.27 Placing the blame for

the singular behavior on the “unphysical” symmetries of the FLRW models remained common

practice until the mid-60s. The second limitation of the FLRW models was that of explaining the

formation of galaxies and clusters of galaxies: the formation of “clumps” and other irregularities

is precisely what the idealization of a perfect fluid neglects. Both of these limitations arise from

the presumed breakdown of the idealizations of the FLRW models.

The second limitation is connected with a problem which still vexes cosmologists: how

does matter cluster into structures such as galaxies or clusters of galaxies?28 The general problem

is to account for how a uniform mass distribution develops “clumps” of higher density of the

appropriate size. This requires balancing the attractive force of gravitation with dissipation due

to thermal motion at high temperatures and the expansion of the universe. Lemaı̂tre showed

that small initial wrinkles could grow into prominent irregularities, and proposed a model with

a preferred epoch of galaxy formation arranged by temporarily halting expansion with Λ 6= 0

(Lemaı̂tre 1934). Lifshitz (1946) and Bonnor (1956, 1957) developed methods to study the

behavior of linear perturbations in an expanding universe, and they both noted that graviational

instability could produce galaxies in the available time only if the initial perturbations were

remarkably large (as compared to expected statistical fluctuations). This problem spurred the

research of Gamow and collaborators into a speculative “primeval turbulence” theory of galaxy

formation (Gamow 1952, 1954). Gamow hoped to show that primeval turbulence produced

27See Tolman (1934), pp. 438-439, 484-486. I will return to this point in Chapter 2. For a brief
discussion of Tolman’s research regarding singularities, see Earman (1999).

28See also the much more detailed discussions of structure formation in Peebles (1980), Chapter 1, and
Kragh (1996), p. 288 ff., both of which I draw on here.
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inhomogeneities of a characteristic size, and that structures of this size develop into galaxies.29

Few cosmologists shared Gamow’s enthusiasm for the idea. By way of contrast, Sciama (1955)

proposed a promising mechanism for galaxy formation in a steady state theory: the “tidal wake”

of a galaxy would lead to an increase in density of the intergalactic gas, which would then

collapse to form a galaxy with a characteristic mass.30

Hoyle made good use of this lacuna in criticizing the evolutionary models:

Undoubtedly, the greatest shortcoming of all cosmological theories lies in their fail-
ure to provide a working model of the formation of galaxies. Evolutionary cosmol-
ogy provides no model at all. Galaxies are supposed to arise from initial fluctua-
tions, every necessary property being inserted into the theory as an initial condition.
(Burbidge et al. 1963, p. 874)31

Although Hoyle admits that the steady state theory also lacks an account of galaxy formation,

simply assuming that the initial fluctuations have all the right properties to seed galaxies has

all the advantages of theft over honest toil. Dissatisfaction with simply extrapolating current

observations back to an initial spectrum of fluctuations also motivated Gamow’s approach and a

handful of other theories. But in the mid-60s there was no generally accepted theory of galaxy

formation in evolutionary cosmology which could produce this initial spectrum of perturbations,

or which relied on a mechanism other than gravitational instability to produce clustering.

Gamow’s interest in galaxy formation was a byproduct of his detailed study of nuclear re-

actions in the early universe, which he undertook in collaboration with Ralph Alpher and Robert

29Gamow had originally claimed to have a correct theory of galaxy formation in 1948 (Gamow 1948a):
during the transition from radiation- to matter- dominated expansion, Gamow argued that gaseous con-
densations of a characteristic size (determined by Jeans’ criterion of gravitational instability) would form.
Criticisms raised by Gamow’s collaborators Alpher and Herman (Alpher and Herman 1949) (involving
both calculational mistakes and fundamental problems with applying the Jeans criteria) led Gamow to
abandon this idea.

30This idea is also described qualitatively in Sciama (1959).
31The body of the paper is concerned with difficulties with a version of Sciama’s theory with a “hot”

intergalactic gas—so the shortcoming is not limited to evolutionary theories.
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Herman with the aim of explaining the observed relative abundances of the elements.32 This

research in turn drew on considerable work done in the late 30s (in which Gamow played a

part) regarding nuclear reactions occurring in stars. Studies of stellar processes indicated that

the nuclear reactions in stars probably could not produce heavier elements, and in addition the

“equilibrium theory” appeared to require a variety of physical conditions at very high tempera-

ture in order to reproduce observed element abundances.33 Although several cosmologists had

speculated about the possibility of element formation in the early universe, Gamow recognized

the importance of the connection between reaction rates for various nuclear processes and the

expansion rate of an FLRW model. On the assumption that the universe originally consisted of

a dense neutron gas and photons, Gamow argued that neutron decay and capture would produce

heavier elemets as the universe cooled to a temperature such that the average kinetic energy was

lower than the binding energy for stable nuclei.34 Reactions such as the capture of one neu-

tron by a proton (1H →2
H) occur with high probability when the following condition holds:

v∆tnσ ≈ 1 (where v is the thermal velocity, ∆t is the expansion timescale, n is the baryon

number, and σ is the scattering cross section). With knowledge of the scattering cross section

and the expansion rate for a radiation-dominated FLRW model, Gamow was able to calculate

element abundances. One of the major problems for the Gamow theory was that accounting for

32Kragh (1996), Chapter 3, provides a detailed and reliable account of Gamow’s theory.
33As the name suggests, this approach was based on the assumption that the elements were initially

in a state of dynamical equilibrium. Using Boltzmann’s equation and observed relative abundances, one
can estimate the temperature and density of a “neutron gas” at which the elements would have been in
equilibrium. Roughly, the problem with equilibrium theory was that observed abundances of the elements
could not have been in equilibrium under similar conditions. Not everyone agreed with Gamow, Alpher,
and Herman that this was a serious defect of the theory: see North (1965), p. 256-258 for a brief review
of the debate and references.

34The original Alpher et al. (1948) paper considers only a neutron gas, but Gamow (1948b,a) include
photons.
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heavier elements by the process of neutron capture appeared impossible due to the “mass gaps,”

the lack of stable nuclei with atomic weights of 5 or 8.

Although it generated a great deal of interest in the late 40s and early 50s (include cov-

erage in the popular press and Gamow’s own popularizations), the Gamow-Alpher-Herman pro-

gram was nearly forgotten following their last publication on the topic (Alpher et al. 1953). This

reception may have been partially due to the mass gap problem, which subsequent elaborations

of the idea showed no signs of resolving. But other factors were also undoubtedly important (cf.

Kragh 1996). None of the main proponents of the idea continued pursuing research in cosmol-

ogy: Alpher and Herman took industrial jobs, while Gamow attempted (among other things) to

decode the genetic cipher. Research interest shifted to the possibility of nucleosynthesis in other

“hot places,” namely the centers of massive stars and supernovae (Burbidge et al. 1957). Per-

haps most importantly, the big bang program fell through the cracks between well-established

disciplines, in a sense. Very few physicists trained in America in the 50s possessed expertise in

both relativistic cosmology and nuclear physics. The early stages of research utilized results and

expertise developed in the study of various nuclear reactions as part of the Manhattan Project.

Further refinements of the program resulted from carrying out the nuclear physics calculations

with much greater care, but there were certainly more promising research projects for those with

an expertise in nuclear physics. The big bang program was also not immediately relevant to

mainstream lines of research being pursued in astronomy.

In closing, I should emphasize that the three ideas discussed above were not originally in-

troduced as interlocking components of an integrated cosmological theory. A number of further

insights were incorporated in what Weinberg (1972) dubbed the “Standard Model” of cosmol-

ogy, as I will describe in Chapter 2.
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1.3 Overview of the Dissertation

This dissertation focuses on methodological issues relevant to the development of early

universe cosmology, divided somewhat artificially into three historical and three philosophical

chapters. Here I will briefly outline the main themes explored below.

The three historical chapters cover roughly twenty years (1965-1985) in the history of

cosmology. As with the early stages of research in many fields, this period is characterized

by the gradual development of a consensus regarding the central problems in the field and the

methodology and theoretical tools to be used to solve them. Historians are familiar with many

cases of theory development driven by empirical anomalies or logical inconsistencies within ex-

isting theory, but by the late 60s cosmologists had developed a standard model compatible with

observations and free from inconsistencies. What drove early universe cosmology was an am-

bitious extension of the scope of explanatory questions theorists hoped to answer. In particular,

cosmologists hoped to show that many observed regularities of the early universe result from

fundamental physics, rather than treating these regularities as features of the universe’s initial

state.

Chapter 2 describes the development of the standard model and the recognition of sev-

eral “unnatural” assumptions it requires regarding the initial state; the initial state appeared to be

“finely tuned.” The account of nucleosynthesis was one of the standard model’s great successes:

the abundances of light elements produced in the early universe could be calculated using nu-

clear physics, rather than simply ascribing these abundances to the initial state. This account

involved no physics beyond what had been tested in Los Alamos and other nuclear laboraties.

By way of contrast, attempts to solve other fine-tuning problems drew on speculative new ideas
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in physics. Charles Misner focused on a particularly striking fine-tuning problem: observa-

tions of the background radiation indicate that the simple FLRW models are actually incredibly

good approximations for the early universe. But why should the early universe be as uniform

as the highly symmetric FLRW models? Rather than accepting uniformity as an unexplained

feature of the initial singularity, Misner proposed a new dynamical theory of the early universe

that produced uniformity as an “output” regardless of the initial state. Several other research

groups applied a similar methodology to this and other fine-tuning problems, by introducing

various effects, including particle creation in strong gravitational fields and new ideas from par-

ticle physics. Although Misner’s attempt to explain uniformity dynamically ultimately failed,

by the mid-70s a number of cosmologists had adopted Misner’s methodology in attempting to

solve fine-tuning problems. Misner also clearly identified the presence of particle horizons as an

obstacle to solving fine-tuning problems.

The third chapter traces the provenance of an idea that would take center stage in the 80s,

namely that the early universe passed through a transient de Sitter-like phase. The differences

among the various proposals incorporating this idea reflect the variety of theoretical tools and

methodological assumptions prevalent in cosmology at the time. Soviet cosmologists empha-

sized that a de Sitter-like phase allowed one to avoid an initial singularity, whereas a group of

theorists in Brussels argued that it was a consequence of a treatment of the “creation event” itself.

These ideas faced two common problems: what was the source of the early de Sitter phase, and

how did a transition into the observed FLRW expansion occur? However, these imaginative and

quite speculative suggestions did not have links to more well established physical theories that

might have fostered their further development. By way of contrast, two other proposals did have

such links. Drawing on the active research field of semi-classical quantum gravity, Starobinsky
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showed that de Sitter space is an unstable solution to the classical field equations modified by

taking quantum effects into account. The second proposal was a by-product of developments in

particle physics: successful unification of the electromagnetic and weak forces incorporated a

novel treatment of symmetry and the vacuum, a feature carried over to Grand Unified Theories

(GUTs). The early universe proved to be one of the few testing grounds for these innovative

ideas, and several theorists interested in these developments in the conceptual foundations of

field theory turned to cosmology.

Research in the 70s explored a number of possible consequences of the application of

GUTs to the early universe, such as the formation of topological defects and the effects of baryon

number non-conserving interactions. Chapter 4 describes the introduction and early development

of an idea that came to be the almost exclusive focus of early universe cosmology. Alan Guth

gave the idea that the early universe passed through a de Sitter-like phase an apt name, “inflation-

ary cosmology,” and more importantly provided a compelling argument in its favor. Guth was

the first to present a stage of de Sitter-like or “inflationary” expansion as an appealing package

deal: three apparently independent features of the early universe—overall uniformity, flatness,

and lack of magnetic monopoles—could all be traced to this inflationary stage rather than ini-

tial conditions. Guth’s presentation (in Guth 1981, and in several talks) did not gloss over his

failure to account for a transition to FLRW expansion, and several of his contemporaries took

on the task of successfully implementing inflation. Following Guth’s work the development of

a successful model of inflation was the central problem in early universe cosmology, and within

six months Linde (1982); Albrecht and Steinhardt (1982) had both proposed solutions of the

“graceful exit” problem. At the Nuffield workshop, inflationary cosmology underwent “death

and transfiguration”: several theorists independently developed accounts of the production of
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density perturbations during inflation, but observational constraints on the amplitude of these

perturbations indicated that the field responsible for inflation probably was not the Higgs field

of a GUT, as it was in current models. Shortly after the workshop the “inflaton” field was in-

troduced, as the fundamental scalar field with the appropriate properties to drive an inflationary

stage. Opinions still differ regarding the importance of a tight connection between the inflaton

and particle physics, but several cosmologists have argued that the observational case for in-

flation is strong enough to warrant introduction of the inflaton regardless of whether it can be

identified with an independently motivated fundamental scalar field.

Inflationary cosmology has decisively solved several of the fine-tuning problems of stan-

dard big bang cosmology, and in many quarters it is regarded as firmly established. But the status

of the fine-tuning problems themselves undercuts the significance of these achievements. One

of the appealing features of empirical anomalies is that they are not defeasible, assuming that

the theory and the observational or experimental procedures involved are both well understood.

Given certain assumptions regarding the distribution of masses in the solar system, accepting

Newtonian gravitation forces one to also accept a particular value of Mercury’s perihelion ad-

vance at odds with observational results. None of this reasoning requires guesswork regarding

future theories. By contrast, this is exactly what the fine-tuning problems driving early universe

do require: the “problems” are defined by a contrast between the presumed “natural initial state”

and the observed state. The “initial state” is acknowledged to lie beyond the reach of current

theory, and thus postulating its nature involves considerable epistemic risk. This educated guess

may turn out to be validated by future theory, but it also may not. The recent ekpyrotic scenario,

for example, incorporates a different conception of the initial state that renders the problems

solved by inflation superfluous. Whether or not the ekpyrotic scenario stands the test of time, it
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serves to illustrate the risk involved in granting great confidence to theories that solve fine-tuning

problems.

The philosophical part of the thesis considers various issues connected to the develop-

ment of early universe cosmology. Chapter 5 tackles the implications of the uniqueness of the

universe somewhat obliquely by focusing on three principles: the cosmological, indifference,

and anthropic principles. The importance of fine-tuning is often established by appealing to the

“indifference principle,” namely that a theory which does not require special initial conditions

is to be preferred. I argue that this principle requires stronger metaphysical commitments than

cosmologists typically admit. I treat the cosmological principle, on the other hand, as a principle

of general scope that licenses local to global inferences. Finally, I give a brief deflationary ac-

count of anthropic reasoning, emphasizing that weak anthropic principles simply acknowledge

selection effects whereas strong anthropic principles make a strong and unwarranted explanatory

demand.

Chapter 6 focuses on the role of explanatory adequacy in theory choice. The historical

account illustrates that various explanatory virtues of inflation clearly played some role in its

widespread acceptance. However, I argue against taking either unification or causation as epis-

temic virtues that constitute a component of rational theory choice. In the case of unification,

even Kitcher’s well-developed account fails to handle the tradeoffs that are typically involved in

developing a new theory that is unified in two distinct senses: namely, it draws together various

phenomena, and it successfully combines distinct theories that both apply to the same domain. I

analyze causal arguments relevant to inflation in terms of the “law of conditional independence,”

then go on to formulate a notion of robustness intended to capture the alleged advantages of
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inflation. Finally, I argue that assessments of either explanatory advantage depend upon assump-

tions about the initial state, and in that sense resemble fine-tuning problems in that they depend

upon projections regarding the future course of research.

In chapter 7 I consider the prospects for a straightforward empirical case in favor of

inflation. First I assess two problems with the original trio of inflationary predictions: they are

not robust, in the sense of holding for all “natural” inflationary models, and they are furthermore

not “distinctive,” in the sense of differing from what one would expect based on alternative

theories of the early universe. By contrast, the comparison of inflationary cosmology with the

imprint of density perturbations on the CMBR provides the best possibility for further refining

the theory. I will assess the idea of use novelty as applied to this case, and argue that the apparent

importance of novelty can be traced instead to the importance of independent constraints on

theoretical entities, in this case the inflaton potential.
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Chapter 2

The Origins of Early Universe Cosmology

The discovery of the cosmic microwave background radiation (CMBR) “by telephone”

in 1965 made the front page of the New York Times, above the fold. Readers were treated to a

large picture of the horn antenna used to make the discovery, under the headline “Signals Imply

a ‘Big Bang’ Universe” (Sullivan 1965). This discovery (arguably) occured when Arno Penzias

telephoned Robert Dicke to inform him of the excess radio noise he and Robert Wilson had

observed with the horn antenna, and Dicke recognized the theoretical implications of this radio

noise.1 Dicke’s interpretation of the CMBR as the left-over black body radiation from a hot

big bang has been almost universally accepted since 1965. According to the big bang theory,

the CMBR provides a “snapshot” of the surface of last scattering, when the universe rather sud-

denly became transparent as free electrons combined with nuclei to form atoms.2 Prior to this

decoupling, the photons and matter were in thermal equilibrium due to frequent scattering reac-

tions between photons and free electrons; after decoupling from the matter, the photons cooled

adiabatically with the expansion of the universe.3 These photons carry a tremendous amount of

1See Kragh (1996), Chapter 7, for a detailed account of this episode. Penzias and Wilson were awarded
the 1978 Nobel Prize in Physics for their observational work, despite their initial doubts regarding its
theoretical implications. Several observers detected the background radiation by a variety of methods
prior to Penzias and Wilson (including Le Roux, Shmaonov, Ohm, and McKellar), but the significance of
these observations was not recognized prior to Penzias’s phone call.

2Decoupling occurs at about 10
13 seconds after the big bang by current estimates, when the scattering

cross section for the photons drops from that due to Compton scattering to that due to scattering by neutral
hydrogen and helium, which is much lower.

3The effect of this adiabatic expansion is to lower the temperature of the black-body spectrum of the
photons: T ∝ 1/a (where a is the scale factor). This effect of expansion was known long before the
discovery of the CMBR (see Tolman 1934, , §171).
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information about the very early universe to astronomer’s radio telescopes. Researchers working

in cosmology and related fields at the time still describe their initial reaction to these observa-

tions with remarkable clarity.4 Papers published soon after the discovery betray the excitement

of the field: the data-starved field of cosmology had discovered a “Cosmic Rosetta Stone,” which

several research groups planned to use to decipher the early universe’s history. Indeed, main-

stream cosmologists often give May of 1965 as the birthdate of “scientific” cosmology. The

idea that scientific cosmology began in 1965 has become a firmly entrenched component of the

popular mythology of the field, reiterated in review articles, popularizations, and even (more

surprisingly) in some history of science articles (such as Brush 1993). However, reserving the

honorific of “scientific” for post-1965 cosmology betrays a serious misunderstanding of the field;

precise observational work in cosmology, usually taken to be the demarcation criteria in these

discussions, certainly existed before 1965.5

The sparse scholarly literature on the history of cosmology typically emphasizes the

importance of this discovery in ending the debate between the big bang and steady state theories.

This emphasis is misleading in two respects. Everyone who could be convinced of the falsity of

the steady state theory by recalcitrant observations abandoned the theory for other reasons, and

even the challenge of accomodating the CMBR observations has not triggered apostasy among

the remaining stalwarts.6 But more importantly, the CMBR convinced researchers that the early

4See, for example, Misner (2001); Peebles (2002). Misner and other theorists were much less cautious
than more observationally oriented researchers in taking the early results to establish a nearly isotropic
thermal background; as Peebles (2002) emphasizes, measurements of the short wavelength portion of the
spectrum (which would test the turn-over to the Wien law characteristic of the black body spectrum) were
not well established until much later, and ultimately COBE provided the first fully convincing evidence
for a thermal spectrum in 1992.

5Kragh (1996) convincingly debunks this myth.
6Kragh (1996), Chapter 7, gives a detailed account of the response of various advocates of the steady

state theory to the CMBR observations. Among those who explicitly converted to the big bang theory,
such as Sciama and McCrea, the CMBR did not play a decisive role. On the other hand, many one-time
advocates of the theory drifted out of cosmological research and into other fields, without ever explicitly
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universe, once thought to be the subject of wild extrapolations, unfounded speculations, and little

else, could be brought within the realm of responsible theorizing. Within two years after the

discovery of the CMBR, several research groups began to develop detailed theoretical accounts

of the first few minutes of the universe’s history. Writing in 1977, Steven Weinberg commented

that

[Prior to discovery of the CMBR]...it was extraordinarily difficult for physicists to
take seriously any theory of the early universe. ... The most important thing accom-
plished by the ultimate discovery of the 3

◦K radiation background in 1965 was to
force us all to take seriously the idea that there was an early universe. (Weinberg
1977, pp. 131-132)

Taking the early universe seriously led to a flurry of research in cosmology in the late 60s and

early 70s.

This chapter describes the field of cosmology in the late 60s and 70s, focusing on the

development of early universe cosmology shortly after the discovery of the CMBR. Several

factors contributed to the rapid growth of interest in this speculative field. As I have already

emphasized, the CMBR offered a rich, accessible source of information about the early universe;

it is typically described as the secure observational fact in cosmology. The impact of this new

discovery is similar to several other cases in the history of astronomy, such as the development

of spectroscopy in the late 19
th and early 20

th century, when advances in instrumentation and

technology opened up entirely new research areas. Ever more precise observations of the CMBR

have been the empirical touchstone for early universe cosmology, and the possibility for detailed

comparisons between these observations and early universe theories has been an important factor

in originally inspiring and sustaining interest in the field. A second important factor was the

endorsing the big bang theory. Hoyle, Narlikar, and a handful of collaborators have continued to propose
versions of the steady state theory, but I agree with Kragh’s assessment: this research has had no impact
on mainstream cosmology.
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development of a widely accepted framework for cosmology at later times, the hot big bang

model. In 1972 Weinberg dubbed this the “Standard Model” of cosmology (Weinberg 1972),

and it drew on the ideas discussed in the previous chapter, combined with a number of insights

from subsequent research. I will focus on the development of the standard model in §2.1 below.

The overall success of the standard model encouraged theorists to consider more speculative

extensions of it approaching the “absolute zero of time” (borrowing Misner’s phrase). These

extensions involved a wealth of interesting theoretical problems in classical general relativity,

quantum theory, and quantum gravity, and they also addressed inadequacies of the standard

model. Finally, the discovery of the CMBR came in the midst of a renaissance in the study of

general relativity. General relativity was not an active part of mainstream physics for several

decades, due in part to the fast-paced and well-funded development of post-war particle physics.

The late 50s and early 60s saw a gradual end to this period of isolation and stagnation. Many

of the physicists responsible for this resurgence of interest in relativity, such as Hawking and

Misner, also focused on early universe cosmology. The participation of these prominent figures,

along with the increasing interest in early universe cosmology among particle physicists (such

as Weinberg), legitimated the field for a generation of physicists.

In general terms, a number of research groups pursued two different approaches: one

explored possible relativistic effects due to more realistic (less symmetric) models of the early

universe as it emerged from the initial singularity, while the other approach focused on the results

of introducing more realistic models of the matter content of the early universe (usually in a fixed

background spacetime). These approaches frequently overlapped—for example, in studies of the

impact of a specific term in the stress-energy tensor on the evolution of a cosmological model

(such as Misner’s neutrino viscosity). Both approaches aimed to illuminate any one of several
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pressing problems: the surprising isotropy of the universe, the formation of galaxies, the amount

of entropy in the early universe (measured in terms of the number of photons per baryon), and

the asymmetry between matter and antimatter. All of these problems derive from a common

source: ignorance of the nature of the universe after it emerged from the initial singularity.

2.1 Development of the Standard Model

Historians often take the development of a widely accepted common framework to be

a hallmark of a “mature” science. The development of such a framework, the hot big bang

model, culminated in the late 60s with the combination (and, in the case of nucleosynthesis,

rediscovery) of several ideas developed decades earlier, discussed in more detail in the previous

chapter.7 According to the hot big bang model, the large scale structure of the universe and

its evolution over time are aptly described by the simple FLRW models. Extrapolating these

models backwards leads to a hot, primeval “fireball,” the furnace that produced both the CMBR

and characteristic abundances of the light elements. Finally, the theory included the general

idea that large scale structure, such as galaxies and clusters of galaxies, formed via gravitational

clumping, although in the 60s there was little consensus regarding how to amend the FLRW

models in order to give a more detailed account of structure formation. All of these ideas had

been pursued prior to 1965, but review articles from 1966 onward show a new confidence that

these ideas fit together as part of a consistent overall theory compatible with observations. These

reviews often cite the discovery of the CMBR as the main source of confidence in the hot big

7Although the big bang model clearly has its roots in the work of Lemaı̂tre, Gamow and others, there
are a number of differences between these earlier ideas and the big bang model accepted in the late
60s. North (1965)’s comprehensive history, written before the acceptance of the “standard model,” is
instructive in this regard: although he discusses Gamow’s theory of element formation and the FLRW
models, these are never presented as components of a larger, comprehensive theory (cf. Kragh 1996).
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bang model; several reviews echo Zel’dovich and Novikov (1967)’s conclusion that the hot big

bang model seems inescapable in light of the CMBR. With the marginalization of the steady

state theory, no alternative theory had widespread support among mainstream cosmologists.

After 1966 cosmologists mostly agreed that the hot big bang model outperformed rival

cosmological models, and in this sense the field reached consensus on a Kuhnian paradigm.

But the big bang model still constituted only a fairly loose framework, not nearly as tightly

constrained by observations or internal consistency as other theories in astronomy and physics.

Two early, influential presentations of the big bang model both stressed its tentative nature.

Although Weinberg (1972) called this theory the “standard model” of cosmology, he emphasized

its utility, rather than any conviction of its truth, as a reason for pursuing it further:

Of course, the standard model may be partly or wholly wrong. However, its impor-
tance lies not in its certain truth, but in the common meeting ground that it provides
for an enormous variety of observational data. By discussing these data in the con-
text of a standard cosmological model, we can begin to apprecate their cosmological
relevance, whatever model ultimately proves correct. (Weinberg 1972, p. 470)

Peebles made a similar point in the introductory remarks to his influential textbook:8

There is the point of view that in a science as primitive as cosmology one ought
to avoid orthodoxy, give equal time to all competing cosmologies. ... My own
preference is to make a subjective selection of a reasonably possible cosmology,
and then study it in all the detail one can muster. The end result of such an effort
may be to reveal that the cosmology is logically inconsistent or even in conflict with
observation, which is progress of a sort. The hope is that the development of the
observations may convince us of the rough validity of the chosen cosmology, and
guide us to how the cosmology should evolve. (Peebles 1971, p. viii)

8It is hard to imagine that many cosmologists would have disagreed with Peebles “subjective” selection
of a preferred cosmological model in the 70s; most contemporary review articles discussed the steady
state theory and other alternative theories only in relation to the history of the field, and not as viable
alternatives to the hot big bang model.
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Weinberg and Peebles both emphasize the importance of accepting the big bang theory as a com-

mon framework for organizing the relevant observational data while down-playing the degree of

certainty attributed to the theory. This caution partially resulted from a keen awareness of the

numerous idealizations built into the hot big bang model. In this section I will discuss two cases

of “paradigm articulation” that helped to eliminate some of these idealizations. The first is the

development of new tools in relativistic cosmology that allowed the study of (some aspects of)

general cosmological models, rather than the maximally symmetric FLRW models. Second was

the development of an account of the thermal history of the early universe stretching back to the

“hadron era.”

2.1.1 Relativisitic Cosmology

The surge of research work in cosmology in the late 60s drew upon and reinforced re-

newed interest in the general theory of relativity (GTR). Throughout most of the 40s and 50s rel-

ativity theory remained isolated from other areas of physics in American physics departments.

General relativity was not even taught in the top physics departments in the country (such as

MIT, Berkeley, Princeton, Columbia and Harvard), and it was definitely not included as part of

the “core curriculum” for physics graduate students.9 Instead it was regarded as a mathematical

subject, as a remark by Victor Weisskopf to Robert Dicke indicates: “I asked Victor Weisskopf

one time... shouldn’t a graduate student pay attention to relativity? And he explained to me

9Peter Bergmann started an active relativity group at Syracuse University in the late 40s, but the
leading physics departments did not include general relativity as part of the graduate curriculum until
much later. John Wheeler began teaching a graduate course in general relativity at Princeton in 1952, and
the other leading departments followed suit more than a decade later. See Kaiser (1998) for a discussion
of how and where general relativity was taught during this time period.
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that it really had nothing to do with physics. Relativity was a kind of mathematical discpline.”10

Much of the work on relativistic cosmology in the 40s and 50s satisfies Weisskopf’s description:

studies of the mathematical features of various cosmological models (such as Taub 1951) often

appeared in math journals. Regardless of where it appeared, research devoted to general rela-

tivity lagged far behind the explosive overall growth of physics: during a period (1939-1956)

in which the Physical Review grew in size by over 600% (Kevles 1977), the output of papers

related to relativity stayed constant at roughly 30 papers per year (Eisenstaedt 1986).

There are several reasons for this overall stagnation in relativity theory.11 Perhaps the

most important was the combination of daunting mathematical complexity and the small mag-

nitude of general relativistic corrections to Newtonian theory. Despite the major conceptual

differences between general relativity and Newtonian theory, for almost all applications of grav-

itational theory the Newtonian approximation remains valid, or can be adjusted by including

relativistic corrections. Many physicists were willing to join Max Born in admiring relativity

from a distance rather than learning the intricacies of the theory:

I learned it [general relativity] not only from the publications but from numerous
discussions with Einstein, which had the effect that I decided never to attempt any
work in this field. The foundation of general relativity appeared to me then, and it
still does, the greatest feat of human thinking about Nature, the most amazing com-
bination of philosophical penetration, physical intuition, and mathematical skill.
But its connections with experience were slender. It appealed to me like a great
work of art, to be enjoyed and admired from a distance. (Born 1956, p. 253)

Starting in the 50s several experimental groups set out to strengthen general relativity’s connec-

tions with experience by finally improving upon the three classical tests of the theory. Luckily

10Dicke, recalling a conversation with Weisskopf from his graduate school days in the early 40s, in an
interview recorded in Lightman and Brawer (1990), p. 204.

11See, in particular, Eisenstaedt (1986) and Will (1993) for discussions of this stagnation and the sub-
sequent renaissance.



37

Robert Dicke did not follow Weisskopf’s advice, and instead started a group at Princeton devoted

to more rigorous experimental testing of general relativity. This revived interest in experimen-

tal tests of the theory prompted Schild to comment that “Einstein’s theory of gravitation ... is

moving from the realm of mathematics to that of physics” (Schild 1960, p. 778).

Many of the scientists in newly founded gravity groups focused on cosmology, and in

contrast to the more mathematically oriented relativistic cosmology this “physical cosmology”

drew heavily on other areas of physics as well as observational astronomy. For example, the

wealth of physical and observational detail in Peebles’ influential 1971 textbook (Peebles 1971)

contrasts sharply with earlier cosmology textbooks such as McVittie (1956), which treat cos-

mology primarily as the study of a handful of exact solutions to EFE. As the community of

researchers working on general relativity in the 50s and 60s grew, the relativist’s repertoire of

mathematical techniques also grew considerably larger. New techniques imported from differ-

ential geometry helped to elucidate one of the outstanding problems of relativistic cosmology:

the nature of the initial singularity in FLRW models, and whether similar singularities occur in

less symmetric models.

A debate about the nature and existence of singularities in cosmological models drew

the attention and research efforts of some of the leading relativists of the 60s. Early research

by Tolman, Lemaı̂tre and others in the 30s established the existence of an initial singular state

in the FLRW models, but this was taken to indicate a limitation of the models rather than a

feature of the early universe. Tolman argued that the presence of a singular state reflects a

breakdown of the various idealizations of the FLRW models.12 The first strong indication that

12Tolman faults both the perfect fluid idealization, and, taking a cue from Einstein, the assumption of
homogeneity (Tolman 1934, p. 438 ff.). For a historical study of research regarding singularities, see
Earman (1999) and references therein.
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loosening the symmetries built into FLRW models would not eliminate the initial singularity

appeared in Raychaudhuri (1955): Raychaudhuri showed that with Λ = 0, for a non-rotating

“dust” solution (with energy density ρ > 0 and p = 0) described in a synchronous coordinate

system, g = det(gab) → 0 at some finite time in the past, whether or not isotropy holds. This

result establishes that timelike geodesics cross, which Raychaudhuri interpreted as signalling the

presence of a physical singularity.

A number of Russian researchers (Landau, Lifshitz, Khalatnikov, and their numerous

collaborators) disputed the significance of Raychaudhuri’s result, and set out to analyze the gen-

eral form of cosmological solutions to EFE in the neighborhood of the alleged singularity, with

the hope of showing that the “singular solutions” depend upon a specialized choice of the initial

matter distribution and gravitational field. More precisely, the Russians aimed to show that the

general solution describes a “bounce”—the matter reaches a maximum density, but then expands

rather than continuing to collapse—and that the bounce fails to occur only for specific initial

conditions. The Russian program resulted in detailed studies of the evolution of anisotropic, ho-

mogeneous vacuum solutions in the neighborhood of the initial singularity (see Belinskii et al.

1974, and references therein) , although they ultimately failed to show that the initial singularity

is an avoidable disaster.

The Russians reluctantly abandoned this goal only after Penrose, Hawking, and Geroch

established the celebrated singularity theorems. These theorems establish that singularities, as

signalled by the presence of incomplete geodesics,13 are a generic feature of solutions to EFE

13An incomplete geodesic is inextendible in at least one direction, but does not reach all values of its
affine parameter.
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satisfying certain plausible assumptions. Hawking and Ellis (1968) prove a singularity theorem

based on the following assumptions:14

(1) GTR is valid.

(2) The strong energy condition holds everywhere.

(3) The spacetime is strongly causal.

(4) There exists a point p such that all the past-directed timelike geodesics through
p start converging again within a compact region in the past of p.

The second and third conditions characterize the stress-energy tensor and the global causal struc-

ture of spacetime.15 The singularity theorems generally take the form of a reductio proof, show-

ing that geodesic completeness of a congruence of timelike geodesics is inconsistent with as-

sumptions similar to those listed above. Hawking, Penrose, and others used the same geomet-

rical methods to prove a number of theorems differing in the list of assumptions. Hawking and

Ellis (1968) chose the set of assumptions above since (4) holds if an inequality expressed in

terms of an integral of the stress-energy tensor (over all past-directed timelike geodesics through

p) is satisfied.16 The energy density of the CMBR alone (neglecting the other matter and energy

in the universe) satisfies this inequality, so the observed universe satisfies the assumptions of

the theorem (although assumption (1) presumably fails in the very early universe). Although

the singularity theorems famously do not reveal the nature of the initial singularity (as Russian

critics emphasized), they establish that the initial singularity is not an artifact of symmetry as-

sumptions. Thus, from 1965 onward relativists interested in the early universe had ample reason

14Recall that the strong energy condition is satisfied if the stress-energy tensor for each matter field
satisfies TabU

a
U

b ≥ −1/2T
a

a
for any unit timelike vector U

a. A spacetime is strongly causal if for every
p in the spacetime, every neighborhood O 3 p contains a subneighborhood U cut no more than once by
any timelike or null curve.

15The need to characterize the global structure of spacetime stimulated research into the causal structure
of relativistic spacetimes. See Hawking and Ellis (1973) for an early, comprehensive discussion of the
singularity theorems.

16See Hawking and Ellis (1968) and the discussion in §10.1 of Hawking and Ellis (1973).
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to take the presence of an initial singularity seriously, even though the nature of this singularity

continued to inspire debate and further research.

The singularity theorems are one example of attempts to move beyond highly symmet-

ric solutions in order to understand the general features of cosmological models. Research

throughout the 50s and 60s increased the number of known exact solutions to Einstein’s field

equations. Although the surprising isotropy of the CMBR appeared to vindicate cosmologist’s

reliance on the isotropic and homogeneous FLRW models, several groups explored the behavior

of anisotropic solutions near the initial singularity. For the Russian program mentioned above,

this research was an essential part of attempts to understand the initial singularity. Misner’s pro-

gram (discussed in detail below) hoped to show that a general anisotropic solution would quickly

“smooth out” in the first few moments after the big bang. Peebles (1972) contrasted this “revo-

lutionary” approach—with its assumption that the very early universe departs dramatically from

the FLRW solutions, but various physical processes smooth out this primeval turbulence—with

a “conservative” approach. The conservative approach focused on the problem of galaxy for-

mation, usually studied in terms of perturbations on an FLRW background. This work drew on

inhomogeneous exact solutions, combined with an application of relativistic hydrodynamics to

the early universe in order to study the evolution of small perturbations in the otherwise uniform

matter distribution.

2.1.2 Thermal History

Applications of nuclear physics and statistical mechanics to the early universe led to an

increasingly detailed account of the thermal history of the universe, including, in particular, an

account of light element nucleosynthesis. As discussed in the last chapter, Gamow, Alpher,
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and Herman’s pioneering work in nucleosynthesis did not lead to a sustained research program.

However, interest in nucleosynthesis had rekindled by 1965. Burbidge, Burbidge, Fowler, and

Hoyle had amended the Gamow theory of nucleosynthesis with their important account of stellar

nucleosynthesis, and Peebles independently developed an account of big bang nucleosynthesis

in 1965. But in addition to the conceptually straightforward (though computationally difficult)

application of well-understood nuclear physics to the early universe, the early universe provided

a testing ground for the various possible models of the strong interaction considered by particle

physicists. In the late 60s and early 70s particle physicists had already recognized the utility of

the “poor man’s accelerator” (Zel’dovich’s term for the early universe) for testing speculative

ideas in particle physics.

In the late 60s and early 70s a great deal of effort was devoted to calculating the relative

abundances of light elements (1H , 2
H , 3

He, 4
He, and 7

Li) produced in the early universe.

Despite the difficulty of these calculations, the theory of light element synthesis drew almost en-

tirely on relatively well understood nuclear physics. Unlike Gamow’s theory, these cosmological

theories of light element synthesis were supplemented by the theory of heavy element synthe-

sis in supernovae presented in Burbidge et al. (1957). Hoyle and Tayler published a helium

abundance estimate in 1964, shortly before the discovery of the CMBR, and Peebles indepen-

dently rediscovered the basic ideas of Gamow’s big bang theory at roughly the same time. Two

years later Wagoner et al. (1967) published a detailed account of light element synthesis at high

temperatures (Hoyle favored the idea that these high temperatures obtained in the cores of su-

permassive objects, rather than in a hot big bang). The calculated abundances were compatible

with the weak observational limits on helium and deuterium abundances in the late 60s; contin-

ued (and quite substantial) observational work throughout the 70s, along with further refinement
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of the theory, lent increasingly strong support to the theory.17 The sensitivity of these element

abundances to the properties of the early universe at the time of nucleosynthesis (t ≈ .01 seconds

to 3 minutes after the big bang) provides a probe of the universe long before the emission of the

CMBR (at the decoupling time, td ≈ 300, 000 years).

One of the crucial ideas underlying these nucleosynthesis calculations is the connection

between the expansion rate and the interaction rate (cross section) for various reactions. In

the 60s this idea was applied more broadly, in particular to the possible “freeze out” of parti-

cle species. Suppose that a particle species (say, neutrinos) maintains thermal equilibrium with

other particle species via an interaction with an interaction rate Γ (per particle). For a radiation

dominated FLRW model, H scales with temperature as H = − Ṫ
T , and Γ also typically depends

upon the temperature.18 As Zel’dovich emphasized in 1965, if the interaction rate falls below

the universe’s expansion rate, i.e. Γ ≤ H , then the species will depart from thermal equilibrium

as the interactions needed to maintain equilibrium become incredibly rare. More detailed calcu-

lations of the “freeze out” of a number of particles were carried out (by solving the Boltzmann

equation numerically) throughout the late 60s and early 70s.

Extrapolations backwards in time eventually reached temperatures beyond the domain

of applicability of nuclear physics. At temperatures of roughly 10
12 K standard statistical me-

chanics and nuclear physics are expected to break down. Below this temperature, the sea of

particles can be treated with some degree of accuracy as an ideal gas (for particles with masses

m << kT ; recall that c = 1). But at 10
12 K statistical mechanics certainly may not apply:

17See, for exmaple, Peebles (1971) (Chapter VIII) for the tentative nature of the evidence as of 1971,
as compared to the much stronger support reported in Peebles (1993), pp. 184-196.

18The temperature is inversely proportional to the expansion rate a(t). For an FLRW model with a
particular equation of state, one can find an expression for the temperature as a function of time.



43

baryons, mesons and other strongly interacting particles present in the early universe would have

been tightly packed together, with an average interparticle distance on the order of the Compton

length (see Weinberg 1972). The theory covering strong interactions would need to be utilized

in order to understand this state of matter and the interactions between particles could no longer

be neglected. When cosmologists first discussed this problem in the late 60s, particle physicists

were still actively engaged in developing a theory of the strong interactions. The lack of a well

established framework left a number of possibilities open, but research seems to have focused

on two different approaches: the parton or quark model, which takes baryons to be constituted

by elementary particles, and the “composite particle model.”

Hagedorn (Hagedorn (1970) and references therein) developed a composite particle model

with several interesting consequences for early universe cosmology.19 Hagedorn aimed to re-

place calculations based on the dynamics of the strong interaction with a thermodynamic ap-

proach. This approach requires two important assumptions. First, Hagedorn states the “basic

postulate” of his approach as follows: “there are no elementary hadrons, each of them consists

of all others” (Hagedorn 1970, pp. 186, 188)—in other words, Hagedorn treats the proton as on a

par with all slowly or rapidly decaying resonant states (neutrons, pions, etc.). As a consequence

of this assumption, all different possible hadronic states have an entropy which depends only

on mass, and there are no postulated internal structural differences between these particles (in

contrast to the parton or quark model, which treats the resonances as bound states of elementary

particles). Hagedorn then calculates the properties of a sea of hadrons, treated as non-interacting

particles, based on the partition function. One needs to specify the particle density ρ(m)dm

19In all the discussions I have found of a composite particle model, Hagedorn’s theory is the only
such model discussed. See, for example, Weinberg (1972), §15.11, and Zel’dovich and Novikov (1983),
Chapter 6.
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(which fixes the number of particle states between m and m + dm) in order to use the partition

function, and Hagedorn argues that

ρ(m) → Cm
−5/2

exp

(
m

kT0

)

(2.1)

in the limit as m → ∞, where C and T0 are constants to be determined by observation and

k is Boltzmann’s constant. An interesting consequence of a particle spectrum of this type is

the existence of a maximum temperature T0, since the partition function is defined only for

temperatures T < T0. This feature apparently motivated Hagedorn’s approach—he refers to

(controversial) evidence of a maximum temperature in recent accelerator experiments.20 In the

early universe, the diverging energy density (as t → 0) cannot be accounted for as increasing

kinetic energy of particle species, since T → T0; instead, given the asymptotic behavior of ρ(m)

the number of more massive species diverges logarithmically as T → T0. A second important

consequence of Hagedorn’s model is that the expansion rate during the hadron era is given by

R ∝ t
2/3|ln t|1/2.21

Since I will discuss the “elementary particle” model in more detail in the next Chap-

ter, here I will only briefly note its differences from Hagedorn’s theory. Rather than counting

all hadrons and their resonances as equally fundamental particles, according to the elementary

particle model all particles are constituted by a short list of elementary particles (say, photons,

leptons, quarks, and the appropriate anti-particles). If the strong interactions between these ele-

mentary particles can be neglected, then for kT >> m, when the particles’ masses can also be

20See Zel’dovich and Novikov (1983) for a discussion of the experimental data, and an alternative
explanation which does not involve a maximum temperature.

21See Hagedorn (1970), pp. 196 ff., or Weinberg (1972) for a much clearer derivation.
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neglected, the elementary particles have the same properties as black body radiation. The overall

energy density of the universe then depends upon the number of particle species—assumed to be

a small number—and their masses. In particular, the equation of state is given by ρ = 3p, and

the scale factor in an FLRW model evolves according to R(t) ∝ t
1/2. Thus these two different

models led to very different consequences for the evolution of the early universe.

2.2 Fine-Tuning Problems of the Standard Model

Within less than a decade after the initial observations of the CMBR, the research efforts

of a growing community of cosmologists had led to a well-developed standard model, accepted

(at least in general terms) by mainstream cosmologists. Review articles from the mid-70s praise

the standard model, but also emphasize a number of shortcomings. One general weakness of the

standard model stemmed from a variety of implausible conditions required of the initial state of

the universe: the initial state apparently needed to be incredibly “finely-tuned” in order to yield

something like the observed universe.

Misner discussed in detail the most striking “finely-tuned” feature of the universe: its

isotropy and homogeneity at early times. At least four other features of the universe were widely

cited throughout the 70s as examples of fine-tuning. The theory of galaxy formation required

stipulating a specific initial spectrum of density perturbations which have since evolved into

galaxies, clusters of galaxies, and so on. Peebles (1980) emphasizes the value of understanding

the evolution of large scale structure well enough to specify the features of this required initial

spectrum; he regards this as a useful input for developing theories of the early universe, but he

also expresses hope that the spectrum might be understood as the result of fundamental physics.

A second example of fine-tuning involves entropy, measured in terms of the baryon to photon
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ratio η = nb/nγ where nb is the number of baryons and nγ is the number of photons.22 In the

theories of light element synthesis, η is generally treated as a free parameter. Although 4
He

abundance is largely independent of η, the abundances of 2
D and 3

He are more sensitive to

η; thus, observations of element abundances place fairly tight constraints on the entropy per

baryon, at the time usually quoted as η ≤ 10
−7; present estimates (based on energy density of

the CMBR) indicate η ≈ 10
−8. In the 70s interest focused on this ratio as an indication that

only limited dissipation (due to viscosity or other mechanisms) could have occured in the early

universe (see, e.g., Barrow and Matzner 1977). Although the finite value of η serves as an

upper limit, the amount of entropy struck most theorists as remarkably high—and it provided

a clue to possible dissipative reactions or other entropy-producing interactions in the hadron

era. A third example of fine-tuning is the observed present asymmetry between matter and

antimatter. Harrison and several others discussed the possibility that a symmetric early universe

could have produced local concentrations of matter and antimatter separated by large distances

(thus minimizing observational consequences of matter / antimatter annihilation). Finally, the

problem Alan Guth dubbed the “flatness problem” was emphasized by Dicke in Dicke (1969)

and in Dicke and Peebles (1979): roughly, the present observational limits on the energy density

of the universe imply that the early universe was incredibly close to the flat FLRW model.

This section focuses on the three most influential early attempts to solve these fine-tuning

problems: Misner’s study of neutrino viscosity, research regarding particle creation in the early

universe, and early research regarding baryogenesis. All three postulated new physics which

would eliminate finely-tuned initial conditions, and thus trace the observed features of the uni-

verse to new fundamental physics rather than the nature of the initial singularity. Even though

22See, e.g., Chapter 15 of Weinberg (1972) for a detailed discussion.
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the first two of these three attempts did not lead to a widely accepted solution of fine-tuning (and

the jury is still out on the third), this methodology carried over to later research.

2.2.1 Misner’s Chaotic Cosmology

Soon after the discovery of the CMBR, Charles Misner launched what came to be called

the “chaotic cosmology”23 program based on the idea that understanding the dynamics of the

early universe may eliminate the need to stipulate initial conditions. Misner’s lengthy paper

devoted to the isotropy of the universe was motivated by the sense that

[The isotropy of the CMBR] surely deserves a better explanation than is provided
by the postulate that the Universe, from the beginning, was remarkably symmetric.
(Misner 1968, p. 431)

Misner is quite explicit about this methodological shift:

I wish to approach relativistic cosmology from an unfamiliar point of view. Rather
than taking the unique problem of relativistic cosmology to be the collection and
correlation of observational data sufficient to distinguish among a small number of
simple cosmological solutions of Einstein’s equations, I suggest that some theoreti-
cal effort be devoted to calculations which try to “predict” the presently observable
Universe. [...] The difficulty in using relativistic cosmology for predictive rather
than merely descriptive purposes lies in the treatment of initial conditions. [...] Ide-
ally one might try to show that almost all solutions of the Einstein equations which
lead to star formation also have many other properties compatible (or incompatible!)
with observation. More modest but more feasible approaches would attempt to sur-
vey much more limited classes of solutions of the Einstein equations to see whether
some presently observable properties of the Universe may be largely independent of
the initial conditions admitted for study. (Misner 1968, pp. 432-33)

The more modest goal of Misner (1968) is to determine whether physical processes operating

in the early universe could effectively smooth out initial anisotropies before the decoupling time

23Linde has since appropriated this term to describe his version of inflation. Throughout this chapter,
chaotic cosmology refers to Misner’s approach.
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td. “Prediction” in Misner’s sense would amount to showing that all solutions to EFE satisfying

other observational constraints share the property of isotropy at td (or even earlier times).

Misner has also characterized this methodological shift in terms of its explanatory supe-

riority. There are a bewildering variety of cosmological models (exact solutions of Eistein’s field

equations), and even introducing a number of reasonable physical constraints does not narrow

the scope of possible models to something similar to the observed universe. As Misner puts it,

“How can you say you’ve explained the present universe if you can just say, ‘Well, there are mil-

lions of possibilities and we’re one of them’?” The chaotic cosmology program would provide

a more satisfying explanation, according to Misner, in that it would show that the observed uni-

verse is “the natural kind of universe to have” rather than simply one among many possibilities

(Misner 2001).

The properties of anisotropic, homogeneous models were studied extensively prior to

Misner’s work, and the mid-60s saw a brief resurgence of interest in anisotropic models. If one

relaxes the requirement of isotropy in a homogeneous cosmological model, the different spatial

directions are no longer equivalent even though all points on a hypersurface remain equiva-

lent. Anisotropic homogeneous models can be classified according to the symmetry properties

of the three-dimensional hypersurfaces, a project originally undertaken in Taub (1951).24 Prior

to the discovery of the CMBR, Kristian and Sachs (1966) calculated the distortion effects of

anisotropies and inhomogeneities on a pencil of light rays reaching an observer. They estab-

lished that any such distortion effects were far too small to be detected with current levels of

observational accuracy. They used anisotropic models only to test the validity of isotropy. Two

24The models are classified into Bianchi types I through IX, following a study of all three dimensional
Lie groups completed by Bianchi in 1897. See Wald (1984) §7.2 for a concise introduction to the Bianchi
models.
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observational results (both of which proved to be spurious) led physicists to study anisotropic

cosmological models in the mid 60s. Standard big-bang nucleosynthesis in an FLRW model

yields a primeval helium abundance of ≈ 25− 30% by mass, but several observations suggested

that the actual helium abundance was much lower (see Thorne (1967) for references). Hawking

and Tayler (1966) and Thorne (1967) showed that anisotropy at temperatures ≈ 10
9
K would

substantially decrease overall helium production. Thus, later confirmation of He abundances in

the range of ≈ 25 − 30% placed limits on the amount of anisotropy present during nucleosyn-

thesis. The second hint of anisotropy was an observation of a set of 13 QSO’s by Faulkner and

Strittmatter (quasi-stellar objects, now called quasars), which were clustered around the galactic

poles (rather than being uniformly distributed).

Misner recorded the impression that Faulkner and Strittmatter’s QSO observations had

on him in a research journal he kept during his year at Cambridge (for the date of 16 November

of 1966):

Last night Faulkner and Strittmatter showed me their blackboard globe... showing
that the z > 1.5 quasars (all 13 of them) were all ... near the galactic poles. Although
this appears most likely either an ununderstood observational bias, ... we felt that
calculations showing its (probably extreme) implications if interpreted in terms of
anisotropic cosmologies, should be carried out, and today set about this. (Misner
1994, p. 320)

Misner was already familiar with the Bianchi models (see Misner 1963), although he had re-

garded this earlier work as purely mathematical. Later that year (1966) he was able to apply this

extensive background to the physical problems suggested by the QSO observations, namely the

isotropization of initially anisotropic models (Misner 2001).

A slight variant of the Kasner solution offers a good example of the “isotropization”

which Misner hoped would hold quite generally. The Kasner solution is a relatively simple
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anisotropically expanding homogeneous model, with the following line element:

ds
2

= −dt
2
+ t

2p1dx
2
+ t

2p2dy
2
+ t

2p3dz
2

(2.2)

The variables appearing in the exponents satisfy the following relation:25

p1 + p2 + p3 = (p1)
2
+ (p2)

2
+ (p3)

2
= 1 (2.3)

The constraints imply that at least one of the variables is non-positive. The pi’s determine the

velocity of expansion along the coordinate axes of a set of co-moving coordinates, and test parti-

cles follow timelike geodesics with constant (x, y, z). The expansion along the x-axis measured

between two neighboring test particles is proportional to t
p1 , and the volume measured in a

spacelike surface changes with time proportionally to t
p1+p2+p3 = t. The Kasner solution is

a vacuum solution, but as Schücking and Heckmann (1958) showed introducing matter into the

solution causes the anisotropic expansion to smooth out into a flat FLRW model. More precisely,

Schücking and Heckman found a Kasner-like solution for pressureless dust, Tab = ρUaUb. As

t → 0 the dust model can be approximated by the vacuum solution (since curvature effects

dominate the solution at early times), but for later times the matter dominates the dynamics and

drives the solution towards isotropic expansion. The matter terms cause the model to “smooth

out” as t → ∞.

Misner’s proposal relies on a similar property which he thought would hold for more

general anisotropic cosmologies: introducing a term in the stress-energy tensor to account for

25See Misner et al. (1973), p. 801, Hawking and Ellis (1973), pp. 142-44, or Ryan and Shepley (1975),
pp. 159-162 for discussions of the Kasner metric. The constraint follows from EFE, assuming that Tab is
homogeneous or zero.
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“neutrino viscosity” causes the solutions to isotropize and approach the k = 0 FLRW solu-

tion.26 One important problem facing Misner’s proposal was that any initial anisotropies had to

disappear incredibly quickly in order to meet stringent limits on isotropy implied by big bang

nucleosynthesis and CMBR observations. Calculations in Thorne (1967) showed that significant

anisotropies at about 300 seconds after the big bang would lead to insufficient He production,

and the CMBR observations placed more stringent limits on isotropy at the later decoupling time,

td ≈ 10
13 seconds. Misner expected that correctly incorporating the effects of neutrino viscosity

would lead to rapid isotropization at temperatures of roughly 10
10

K , when neutrinos decouple

from the matter in the early universe, prior to nucleosynthesis. The overall effect of neutrino

viscosity is to slow down expansion by converting the energy associated with expansion into

thermal energy. Misner (1968) treats the effects of anisotropy in terms of an “anisotropy energy

density” which measures the energy “stored” in the shear anisotropy. As a somewhat simplified

case, suppose that a radiation-filled region expands anisotropically, with contraction along the x

axis and expansion along the y axis.27 For a collision-dominated fluid, the effects of anisotropic

expansion will be negligible since the particles exchange energy through frequent collisions.

Such a fluid will simply cool adiabatically as the universe expands. In contrast, when neutrinos

decouple from the surrounding matter and radiation (at around 10
10

K) for a brief period they

will have a scattering cross section that is small enough so that the mean free path is relatively

26Misner focuses on Bianchi type I cosmologies, with a metric given by ds
2

= −dt
2

+

e
2α

(e
2β

)ijdx
i
dx

j , where βij is a symmetric, traceless, 3 × 3 matrix and both α, βij are functions of
time, but not of spatial cordinates. The Kasner solution is a special case of Bianchi type I.

27This discussion is based on Misner and Matzner (1972). The calculations in Misner (1968) utilize an
approximate form of the stress-energy tensor in order to calculate the effects of viscosity.
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long, and anisotropic expansion will lead to significant differences in the temperature of neutri-

nos moving along different axes.28 However, the scattering cross section is still large enough so

that the probability of collisions with electrons is high. These collisions serve as a dissipative

mechanism, converting anisotropy energy to thermal energy, and the increase in energy density

damps and isotropizes the expansion.

Within a year of Misner’s first paper, Stewart (1968) and Doroshkevich et al. (1968) ar-

gued that neutrino viscosity could only smooth out small initial anisotropies. A small literature

sprang up concerning the effectiveness of dissipative mechanisms, leading to a consensus that

neutrino viscosity could not damp all possible initial anisotropies. In addition to these criticisms

of Misner’s specific proposal, the “chaotic cosmology” approach faced three more general prob-

lems. First, Barrow and Matzner (1977) recognized that the observed finite photon to baryon

ratio (≈ 10
8), which serves as a measure of entropy, gives an upper limit on the amount of

dissipation which could have occurred in the early universe (via any dissipative mechanism).

Neutrino viscosity dissipates anisotropy energy, but it also produces entropy in the process, and

dissipation of large anisotropies would lead to a massive overproduction of entropy. Second,

Collins and Stewart (1971) argued that Misner’s methodological goal of completely eliminating

dependence on initial conditions conflicts with standard existence and uniqueness theorems from

the theory of ordinary differential equations. Collins and Stewart (1971) wrote down EFE for

an anisotropic homogeneous model as an autonomous system of non-linear ordinary differential

equations and showed that one can always pick an arbitrarily large anisotropy at a given time

t0 and find a solution of this system of equations as long as there are no processes which could

28The cosmological redshift of radiation in an expanding universe is proportional to a
−4 (where a is

the scale factor). Due to the difference in a along different axes in an anisotropic model, the radiation
along a contracting axis is blue-shifted relative to the radiation along an expanding axis, and thus has an
energy distribution corresponding to a higher temperature. See Misner and Matzner (1972).
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prevent arbitrarily large anisotropies at some ti < t0.29 Misner himself recognized a third fun-

damental problem, now known as the “horizon problem,” which I will discuss below (along with

his attempted solution).

2.2.2 Particle Creation

The research of Zel’dovich, Parker and others focused on a different mechanism which

could lead to isotropization in the early universe: the creation of particles in the strong gravita-

tional fields near the initial singularity. Zel’dovich’s work was inspired by vacuum polarization

effects and pair creation in QED, whereas Parker developed an account of spin-0 and spin-1/2

quantum fields evolving in a fixed background spacetime. The difference in the rate of parti-

cle creation in anisotropic and isotropic models suggested a possible explanation of isotropy—

Zel’dovich and Novikov described the possible connection as follows:

An important result is that such effects [particle creation and vacuum polarization]
are strong for anisotropic singularities but virtually absent at the Friedmann singu-
larity. Perhaps this difference has something to do with Nature’s apparent preference
for the Friedmann model? (Novikov and Zel’dovich 1973, p. 390)

Elsewhere Zel’dovich stated much stronger conclusions:

We conjecture that quantum effects prohibit the most general solutions of the general
relativity equations as candidates for the initial cosmological state. [...] [A]nisotropic
expansion at the singularity leads to infinite quantum effects and to infinite particle
creation. This is considered to prohibit anisotropic singularities. (Zel’dovich 1974,
p. 331)

Below I will briefly review the formal results meant to support these conclusions, focusing on

Parker’s more clearly articulated approach. Subsequent research cast doubt on Zel’dovich’s bold

29More precisely, they write EFE in the form ẋ = f(x, t). On the assumption that f is continuous and
satisfies the Lipschitz condition, i.e. that for some constant c, |f(x, t)− f(y, t)| ≤ c|x − y| for all x, y in
the set of solutions G, they show that EFE have a unique solution for any set of initial conditions in G.
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conclusions, leading instead to an appreciation of the difficulties with defining number operators

for quantum fields in an expanding cosmological model.

Parker’s approach begins with the simplest generalization of the Klein-Gordon equation,

following the usual “rule” of rewriting ordinary derivatives as covariant derivatives to move from

special to general relativity:

(g
ij∇i∇j − m

2
)φ(x

i
) = 0 (2.4)

For a flat FLRW metric with a scale factor a(t) this equation takes the form:30

φ̈ + 3
ȧ(t)

a(t)
φ̇ − ∇φ

a(t)2
+ m

2
φ = 0 (2.5)

Parker then finds that the solution of eqn. (2.5) is a generalization of the special relativistic

result. Switching from Minkowski space to an expanding, flat spacetime leads to replacing the

usual term ω(k, t) = [k
2

+ m
2
]
1/2 appearing in the expansion of the Heisenberg field operator

φ in terms of creation and annihilation operators with a more general expression,31

W (k, t) =

[

k
2

a(t)2
+ m

2

]1/2

+ λ(k, t), (2.7)

30The flat (k = 0) FLRW metric is given by ds
2

= −dt
2

+ a(t)
2
[dx

2
+ dy

2
+ dz

2
]. φ̇ denotes the

derivative of φ with respect to t.
31The special-relativistic expression for the Heisenberg operator φ is

φ(x
i
) =

∫
d
3
k

(2π)3(2ω
k
)1/2

[exp(ik · x− iωkt)a
k

+ exp(−ik · x + iωkt)a
†

k
]. (2.6)

In this expression a
k

and a
†

k
are time independent, but in an expanding universe these operators vary with

time.
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with the stipulation that the last term vanishes when a(t) is constant. Parker also imposes a so-

called “minimization postulate” on W (k, t), meant to insure that a well-defined particle number

operator exists when a(t) is nearly constant (see Parker 1969, pp. 1064-65). Based on this postu-

late, Parker shows that no spin-0 particles are created in a flat FLRW model in two cases: (1) the

limiting case as mass goes to infinity (equivalent to modeling the particle content as pressureless

dust), and (2) if the particle content consists only of massless particles in equilibrium.32

Parker glimpsed a “far-reaching consistency of nature” (Parker 1969, p. 1067) in the

connection between these results and the isotropy of the early universe. Explicitly, he derived

the standard equations for the evolution of a(t) in a flat FLRW model based on the results above

and the following “minimization” hypotheses:

Hypothesis A: In an expansion of the universe in which a particular type of particle
is predominant, the expansion achieved after a long time will be such as to minimize
the average creation rate of that particle.

Hypothesis B: The reaction of the particle creation (or annihilation) back on the
gravitational field will modify the expansion in such a way as to reduce the creation
rate (Parker 1969, p. 1066)

As Parker emphasizes, the derivation of the results (1) and (2) above do not depend directly on

the field equations of general relativity, so an argument based on these Hypotheses and Parker’s

formalism gives an independent route to the flat FLRW model. Unfortunately, Parker has little to

say about physical motivations for either Hypothesis A or B, or the earlier minimization postulate

required to fully specify the form of W (k, t). Although I have not found a criticism along these

lines in the literature, I would be surprised if cosmologists had accepted Parker’s argument as

32In deriving these results, Parker considers only the evolution of a spin-0 field in the background space
(generalized to a spin-1/2 field in Parker (1970)), coupled to no other fields.
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an explanation of isotropy without a strong physical motivation for (or plausibility arguments in

favor of) these two Hypotheses.

Further work on particle creation revealed an important difficulty with Parker’s analysis

(see, in particular, Criss et al. 1975, pp. 93-93). Steigman recognized this difficulty in a ques-

tion posed to Zel’dovich (Zel’dovich 1974, p. 333)—paraphrasing Steigman’s question, to what

extent are results of this approach dependent on the definition of particle number at some ini-

tial time ti? The definition of the creation and annihilation operators (and the number operator,

defined as Nk = a
†
k
ak) in field theory on Minkowski spacetime depends upon the ability to sep-

arate positive and negative frequency solutions of the field equation. For stationary spacetimes

(which possess a timelike Killing vector field), one can still divide positive and negative fre-

quency solutions. Parker argues that for a cosmological model which approaches a nearly static

model, one can neglect the slow time variation of the number operator and treat it like the well-

defined number operator for the static case.33 However, in order to determine the total number

of particles created one also needs to determine the particle content of the initial state—which

was anything but static. Parker’s calculations rely on stipulating that the field of interest was in

a vacuum state at an initial time ti, prior to the onset of expansion. One can then calculate the

number of particles N produced between ti and a later time, when the expansion has slowed.

Unfortunately, N depends on the choice of ti. The difficulty with defining particle number in a

general cosmological model near the singularity presents a serious obstacle to applying Parker’s

approach to early universe cosmology.

33A static spacetime is a stationary spacetime for which, in addition, there are spacelike hypersurfaces
orthogonal to the timelike curves generated by the Killing field.
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Results published in the early 70s failed to support Zel’dovich’s bold conclusion that

particle creation effects would explain the isotropy of the observed universe. However, the results

derived by Parker and others opened up new lines of inquiry. In 1975, research in particle

creation effects shifted away from the early universe to black holes, as a result of Hawking’s

prediction of black hole radiation.

2.2.3 Baryogenesis

The theory of baryogenesis serves as a good example of how developments in quantum

field theory dramatically altered the understanding of the early universe. Since the late 70s cos-

mologists have used baryogenesis as the paradigm case of a successful dynamical solution to

a fine tuning problem (see, e.g., Olive 1990). Other than the trace amounts created in physics

laboratories, our immediate environment is composed entirely of matter rather than antimatter.

Observations in the 70s established that this asymmetry between matter and antimatter extends

to much larger scales (see, in particular Steigman 1976). Baryons and anti-baryons annihi-

late at low temperatures, so any appreciable mixing of matter and antimatter would produce

gamma ray emissions. Observational searches failed to detect gamma ray emissions character-

istic of matter-antimatter annihilations. Cosmic rays also provide observational constraints on

baryon asymmetry: although antimatter has been detected in cosmic rays, the rate is compatible

with the assumption that the antimatter is the product of interactions between cosmic rays and

the interstellar medium. The observations are consistent with a maximally baryon asymmet-

ric universe—all baryons and no anti-baryons—but cosmologists were left wondering how this

came about.
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There appeared to be two ways of handling the baryon asymmetry in the mid to late

60s. First, one could skirt observational constraints and preserve baryon symmetry if the matter

and antimatter “clumped” into large, non-interacting regions. Harrison and Omnes both pursued

this line of thought (see Harrison 1968; Omnes 1971, and references therein); both held that in

the early stages of the universe matter and antimatter would “clump” into regions which would

eventually grow to super-galactic scales. The main difficulty with this approach was to rectify

any clumping dynamics with the overall uniformity of the CMBR and successful nucleosynthesis

calculations. This clumping would have to act in the very early universe to prevent the so-called

“annihilation catastrophe”: because of the large annihilation cross section, in a locally baryon

symmetric universe only a very small number of baryons (or anti-baryons) would survive the

universe’s first moments.34 Omnes in particular developed a sophisticated account of clumping,

based on the idea that a phase transition in the early universe would produce distinct bubbles

of matter and antimatter. He further hoped that his model would account for galaxy formation,

and possibly even for the energy output of quasars, via the inclusion of contracting lumps of

antimatter in the center of a matter-dominated galaxy. The alternative to this very speculative

proposal was to assume that the universe began with a slight pre-dominance of matter. This

surplus matter would survive the rapid annihilation reactions in the early universe. The amount

of extra matter is related to the value of the numerical constant η = nb
nγ

mentioned above. From

nucleosynthesis constraints, it follows that in a baryon symmetric universe the initial abundances

34See, for example, Kolb and Turner (1990) pp. 119-128 for a detailed discussion. They show that
without some way of separating baryons and anti-baryons, the abundances would “freeze out” at nb

s ≈
7×10

−20, where nb is the number of baryons and s is the local entropy density, compared to an observed

value of nb

s ≈ 6 − 10× 10
−11.
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of matter and antimatter would have differed only by the order of 10
−9. But how could this

imbalance take such a precise, apparently finely tuned value?

A third, much more appealing way of handling baryon asymmetry was provided by grand

unified theories (GUTs) developed in the 70s. The arguments above assumed that baryon num-

ber is conserved in all interactions, but GUTs incorporate baryon (and lepton) number non-

conserving interactions. These interactions open up the possibility of generating the observed

baryon asymmetry from symmetric initial conditions. In a prescient paper that preceded the ad-

vent of GUTs by several years, Sakharov argued that baryon asymmetry could be explained by

a model having the following three features (Sakharov 1967):

• Baryon number non-conservation

• C (charge conjugation) and CP (charge conjugation plus parity) violation35

• Departure from thermal equilibrium

Sakharov’s model was based on using heavy bosons mediating quark-lepton interactions, but

GUTs proposed in the following decade shared these features. The second condition is needed

in order for the baryon-number violating interactions to produce an excess of baryons rather than

anti-baryons. Since the masses of particles and their antiparticles are identical, the final condition

is needed to insure that the inverse reactions do not immediately erase the excess baryon number.

Within a specific GUT one can calculate the value of η based on the dynamics much

like one can calculate element abundances in nucleosynthesis based on the underlying nuclear

physics. The exciting prospect of developing an account of baryogenesis was the focus of a

35See, for example, Sachs (1987), Chapters 8 and 9, for a clear discusion of C, P, T (time reversal)
invariance in quantum field theory.
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small industry in the late 70s: Dimopoulos, Susskind, Weinberg, Wilczek, and several others all

contributed to this effort. This was the first application of GUT-scale particle physics, in all of

its gory detail, to the early universe. In the next chapter we will turn to these theories and their

other consequences for early universe cosmology.

2.3 The Horizon Problem

The chaotic cosmology program led to a recognition of the general problems faced by

any attempt to eliminate the various types of fine-tuning discussed above. The most important

of these hinges on a somewhat counter-intuitive feature of the FLRW models first recognized

clearly by Rindler (1956).36 Length scales shrink to zero as the initial singularity is approached,

and one might expect that this shrinking would allow regions of the universe which are currently

far apart to come into causal contact in the early universe. Contrary to this expectation, it turns

out that distant regions could not have causally interacted in the early universe, if it is similar

to an FLRW model (see figure 2.1, and Appendix A.3 for further discussion). The presence of

particle horizons signals this failure:

Particle horizons in cosmological models are limits on the possibilities of causal
interactions between different parts of the universe in the time available since the
initial singularity. (Misner 1969b, p. 1071)

The horizon problem arises due to the apparent conflict between the presence of particle horizons

in standard FLRW models and the observed uniformity of the CMBR.

36Although Rindler introduced particle horizons and noted their presence in the FLRW models, Misner
was the first to clearly state the “horizon problem” described below. Misner mentions particle horizons
in his first paper on dissipative mechanisms, Misner (1967), p. 40: “The wavelengths affected by this
mechanism are those between a γ mean free path ≈ cteγ and the size of the particle horizon ≈ ct (this is
the maximum distance across which causal signals have traveled since the initial singularity).”
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Fig. 2.1 This conformal diagram illustrates the horizon problem in the FLRW models. In a conformal
diagram distance scales are distorted in order to accurately represent causal structure; light cones are all
at 45

◦. The singularity at t = 0 is stretched to a line. The lack of overlap in the past light cones at points
on the surface t = td (both within the horizon of an observer at t = t0) indicates that no causal signal
could reach both points from a common source.

In observational terms this effect says, for example, that if the 3
◦
K background radi-

ation were last scattered at a redshift z = 7, then the radiation coming to us from two
directions in the sky separated by more than about 30

◦ was last scattered by regions
of plasma whose prior histories had no causal relationship. These Robertson-Walker
models therefore give no insight into why the observed microwave radiation from
widely different angles in the sky has very precisely (≤ 0.2%) the same tempera-
ture. (Misner 1969b, p. 1071)

Misner argued that unlike the standard FLRW models, anisotropic models may solve this horizon

problem due to a complicated series of horizon-breaking oscillations in the early universe. This

horizon breaking would provide world enough and spacetime for distant points on the surface of

last scattering to causally interact.
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Misner’s own attempt to solve the horizon problem drew on the study of the evolution

of vacuum solutions near the initial singularity. I will discuss this proposal in some detail since

it illustrates the importance of singularities in Misner’s approach. The “mixmaster universe,” as

Misner called his model, referring to a popular food processor, evolves through a series of stages

in which it resembles a Kasner solution, equation (2.2). If we assume that the only non-zero

expansion is along the x axis, eqn. (2.2) simplifies to:

ds
2

= −dt
2
+ t

2
dx

2
+ dy

2
+ dz

2
(2.8)

The two-dimensional metric corresponding to the t, x coordinates can be rewritten in terms of a

new time coordinate η ≡ ln t:

ds
2

= e
2η

(−dη
2
+ dx

2
) (2.9)

The homogeneous surfaces of the mixmaster universe are closed, and in order to model them in

terms of the Kasner solutions we artificially close the space by identifying points on the spatial

axes, say x and x+4πn. As a result, for any coordinate time interval ∆η > 4π along a worldline,

the horizon distance will be greater than the length of the x axis—so that there are no particle

horizons along the x axis. Misner argued that a mixmaster model would pass through an infinite

number of stages similar to the Kasner solution as the singularity is approached. If each of these

stages persists for a sufficient period of time, then the horizons along every axis disappear. Critics

of Misner’s proposal argued that the probability of the successive stages required to completely

rid the mixmaster universe of horizons is quite low.37 The techniques Misner developed to

37Criticisms of the mixmaster universe along these lines are voiced in MacCallum (1971), MacCallum
(1979), and Collins and Stewart (1971); see also Zel’dovich and Novikov (1983), §22.4 for references to
the extensive Russian literature.
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study the mixing behavior of the model were used for more general analysis of the evolution of

anisotropic spacetimes near an initial singularity. Misner reformulated the mixmaster dynamics

in a canonical Hamiltonian form, using the ADM method. The Hamiltonian turns out to be

quite simple for most of the Bianchi models—it is the same as that for a particle moving in a

five-dimensional space with an effective potential. Active research in “Hamiltonian cosmology”

seems to have peaked in the mid-70s, although the approach spilled over into studies of quantum

cosmology and has been recently revived in studies of chaotic behavior in GTR.38

Misner’s attempt to answer these criticisms of the mixmaster model was linked to an

interesting position regarding the role of the initial singularity:

I prefer a more optimistic viewpoint (“Nature and Einstein are subtle but tolerant”)
which views the initial singularity in cosmological theory not as proof of our igno-
rance, but as a source from which we can derive much valuable understanding of
cosmology. [...] The concept of a true initial singularity (as distinct from an inde-
scribable early era at extravagant but finite high densities and temperatures) can be
a positive and useful element in cosmological theory. (Misner 1969a, p. 1329)

In particular, he speculated that taking the singularity seriously and revising the concept of time

would lead to an effective mixmaster model.39 Attentive readers may have already noticed a

curious feature of the time coordinate η = ln t introduced in the discussion of the Kasner solution

above: it diverges to −∞ as t → 0. Misner argues on physical grounds that Ω = ln(T ), where

T is the temperature, is an appropriate time coordinate for studying the singularity. It shares the

38See Criss et al. (1975) and Ryan and Shepley (1975) for comprehensive reviews. Several of Misner’s
dissertation students actively pursued research along these lines, including Matzner, Ryan, Chitre, and
Shepley (who worked closely with Misner, but did not complete a dissertation under him). See Hu et al.
(1993) for a list of Misner’s dissertation students, and Misner (1994) for the connection with studies of
chaotic behavior.

39“But if the computations accept the singularity and therefore contemplate infinitely many decades of
expansion, we have here a promising approach to an understanding of large-scale homogeneity.” Misner
(1969a), p. 1330. These ideas are also discussed in Box 30.1 of Misner et al. (1973).
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divergent properties of η, blowing up to ∞ as the singularity is approached.40 Misner comments

that: “The Universe is meaningfully infinitely old because infinitely many things have happened

since the beginning” (Misner (1969a), p. 1331, his emphasis). This saves the mixmaster by

allowing ample time for the oscillations to eliminate particle horizons in all directions. This

redefinition of the concept of time is coupled with an argument that quantum effects will not

alter the dynamics as the initial singularity is approached (see Misner 1969c). Though this

attempt to save the mixmaster was ultimately unsuccessful, it does reveal the importance Misner

accorded to the proper understanding of singularities in GTR.

The horizon problem has long outlasted Misner’s proposed solution of it. The presence

of particle horizons presents a general problem for the chaotic cosmology program: if the hori-

zons accurately measure the length scales over which dynamical mechanisms are effective, then

dynamics cannot produce the uniform state of the early universe from arbitrary initial condi-

tions. Misner’s suggestion that an understanding of the initial singularity and the evolution of

anisotropic cosmologies would alleviate this problem stimulated a significant research program.

But by 1975 Criss et al. (1975) concluded a lengthy review article with the comment that: “The

explosion of activity in theories of cosmology due to the new data that became available during

the 1960s has to an extent run its course.” Prospects for the chaotic cosmology program were

dim, according to the reviewers: there was still no convincing demonstration that the dynamical

evolution of anisotropic cosmologies could explain the observed isotropy of the universe. They

40The usual measure of local time in relativity theory is the proper time elapsed along a timelike curve,
which can be interpreted as the time recorded by an ideal clock moving along the curve. Although
there are some subtleties involved in treating the “time” of the initial singularity, in an FLRW model the
singularity is a finite proper time to the past of all observers. The “infinity” Misner utilizes is an artifact
of this particular choice of coordinates.
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call horizon mixing “the ghost of an idea that failed” (p. 73). Without some modification of the

causal structure of the early universe, chaotic cosmology could not solve the horizon problem.

Although responses to the horizon problem among cosmologists in the late 60s and 70s

varied, based on the extensive interviews collected in Lightman and Brawer (1990), Brawer

(1996) concludes that it struck a chord with most cosmologists. Misner’s close personal and

institutional ties to most if not all of the major gravity groups insured that his ideas would be

well disseminated.41 Not surprisingly, the most detailed discussions of the horizon problem

appeared in the literature on chaotic cosmology, but the problem was also mentioned in standard

graduate textbooks on relativity. Readers of “Track 2” of the gargantuan Misner et al. (1973)

would discover a discussion of the horizon problem, and chaotic cosmology more generally, in

Chapter 30. Weinberg (1972) briefly mentions the problem (p. 526):

[I]t is difficult to understand how such a high degree of isotropy could be produced
by any physical process occurring at any time since the initial singularity.

The passing notice of the problem given in Weinberg’s text is fairly typical. Misner’s chaotic cos-

mology program was also frequently mentioned in cosmology texts (see, e.g. Peebles 1971, pp.

222-23, and Sciama 1971, pp. 200-201), but again the horizon problem did not generally receive

a detailed treatment. In the extensive interviews recorded in Lightman and Brawer (1990), most

of the interviewees recall first encountering the horizon problem in the 70s as one of the fun-

damental unsolved problems in cosmology. Those who took the problem seriously often agree

with Misner’s distrust of explanations of uniformity based on specialized initial conditions.

41Misner maintained close ties with Wheeler at Princeton and the Caltech gravity group via Kip Thorne.
In addition, the relativity group at the University of Texas included several of his former students, and the
Cambridge group was well aware of the research Misner conducted there during his sabbatical year.
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The response to the horizon problem contrasts starkly to the reception given to the flat-

ness problem, first described by Dicke in a popular lecture delivered in 1969:

Another matter [the first is the horizon problem] is equally puzzling. The constant
v
2

0
in42

v
2

=
8πGρr

2

3
− v

2

0
(2.10)

is very small, so small that we are uncertain with our poor knowledge of ρ as to
whether or not it is zero. But the first term on the right was very much larger much
earlier, at least 10

3 times as great when the galaxies first started to form and at
least 10

13 times as great when nuclear reactions were taking place in the “fireball”...
The puzzle here is the following: how did the initial explosion become started with
such precision, the outward radial motion become so finely adjusted as to enable the
various parts of the universe to fly apart while continuously slowing in the rate of
expansion? (Dicke 1969, pp. 61-62)

Guth (1981) dubbed this problem the “flatness problem” and gave it as much emphasis as the

horizon problem, but prior to his paper it is only mentioned twice in the published literature

(as far as I know): Hawking (1974), and Dicke and Peebles (1979). In addition, cosmologists

often did not see this as a serious problem prior to Guth (1981)’s clear statement and attempted

solution, which linked the flatness problem to the horizon problem. Brawer (1996) argues that

part of the reason for the divergence of opinion regarding the horizon and flatness problems is

the connection of the former with causality, a topic I will discuss at length in Chapter 7.

To summarize this section, the horizon problem represents one obstacle to the general

approach of the chaotic cosmology program, which aims to eliminate fine-tuning by the intro-

duction of new dynamics. But I should also briefly mention two other very different approaches

to the fine-tuning problems of big bang cosmology (they will be discussed more fully in the fol-

lowing chapters). An approach called “quiescient cosmology,” as described in Barrow (1978),

42This is just the Friedmann equation rewritten, with a replaced by r and ȧ by v.
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takes evidence of regularities in the early universe as evidence of regularities specified in the

initial conditions, rather than as evidence for physical mechanisms which must have eliminated

primordial irregularities. More generally, Penrose (1979) and others have argued that an appro-

priate constraint on initial conditions should emerge from an application of quantum gravity to

the initial singularity. These proposals have remained speculative given the outstanding concep-

tual and technical difficulties facing quantum gravity and quantum cosmology, and by the late

70s (and even up to the present) there were no convincing “theories of the initial conditions”

based on quantum gravity. Mainstream cosmologists have generally preferred dynamical solu-

tions to the fine-tuning problems, perhaps because, as Misner has pointed out, “physics has no

experience with” theories of initial conditions (Misner 2001). A second alternative has provoked

a great deal of debate among cosmologists: anthropic reasoning may also provide a way to avoid

the alleged improbability of the initial state. The weakest form of anthropic reasoning asserts

simply that the presence of human observers must be taken into account in assessing cosmo-

logical theories, in the same way that (for example) the presence of stable planetary systems

must be taken into account. An anthropic explanation of the apparently “finely-tuned” features

of the observed universe would amount to showing that they are necessary conditions for the

existence of intelligent life, and so (the argument goes) we should not be surprised to observe

these features of the universe. If these conditions did not obtain, there would be no intelligent

life here to wonder about the probability of the initial state. Whether anthropic reasoning of this

(or stronger) forms produces satisfactory explanations has been a matter of considerable dispute,

which I will discuss in greater detail in Chapter 5.
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2.4 Conclusions

This chapter has traced the birth and development of the field of early universe cosmology

through its first decade. The remarkable observation of primordial radiation, interpreted as the

remnant of the big bang, forced researchers to take the early universe seriously. This field was a

fertile intersection of interesting theoretical problems in general relativity and particle physics,

and the possibility of further precision observations of the CMBR also provided some hope of

putting various proposed solutions to the test. By the early 70s, cosmology had a well-articulated

“standard model” accepted by a majority of mainstream cosmologists. The development of the

standard model of cosmology coincided with renewed interest in general relativity, and many

of the recently founded relativity groups devoted a great deal of research effort to cosmology,

including early universe cosmology. In addition, the standard model incorporated a much more

detailed account of the thermal history of the universe, similar in some ways to Gamow’s earlier

theory.

But the standard model was not without its blemishes: in particular, it required a num-

ber of apparently implausible assumptions regarding the universe’s initial state. As I argued

above, the most widely accepted methodology for handling these “fine-tuning problems” was

to eliminate the need for specialized initial conditions by introducing new dynamics. Misner’s

suggested mechanism for isotropization and the mixmaster model failed to “predict isotropy” as

Misner had hoped, as did the work on particle creation by Zel’dovich, Parker and others. Of the

three examples of “new dynamics” discussed above, only baryogenesis was still a focus of active

research by the end of the 70s.
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At the end of the first decade, then, early universe cosmology was a rapidly growing field,

with a number of theoretical and observational research programs devoted to its study. Although

the early burst of research activity had not led to a clear resolution of the fine-tuning problems,

these problems had been recognized and studied in detail, and mainstream cosmologists appear

to have agreed on the proper method for solving them. Prominent particle physicists such as

Weinberg contributed to the field, and also recognized that the early universe could provide an

important testing ground for new ideas in high energy physics. But the real impact of particle

physicists on early universe cosmology did not come until the late 70s and early 80s, a topic we

will turn to in the next chapter.
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Chapter 3

False Vacuum

Accounts of the development of inflationary cosmology typically present their protag-

onists, a small band of American particle physicists with Alan Guth in the lead, as intrepid

explorers venturing into untouched territory. Driven by the need to find observational tests of

Grand Unified Theories (GUTs), they were willing to boldly apply their ideas to the distant

realm of the early universe. Beginning in the early 80s, they extended the frontiers of physics

ever closer to the absolute zero of time and created a vibrant new field.

The last chapter undercuts this bit of conventional wisdom by showing that the early uni-

verse had been the focus of active research for over a decade before the particle physicists arrived

on the scene. Early attempts at solving the fine-tuning problems of big bang cosmology relied

primarily on introducing new physics from two sources: using more realistic descriptions of mat-

ter, and including gravitational effects near the initial singularity (such as mixmaster oscillations

and particle creation). But the conventional wisdom is also misleading regarding the interaction

between cosmology and particle physics and the provenance of one of the crucial new ideas in

cosmology. Interplay between research in particle physics and cosmology began in the early 70s

with the advent of the Glashow-Weinberg-Salam electroweak theory and its speculative exten-

sions, GUTs. Soviet physicists, including Linde, Kirzhnits, Sakharov, and Zel’dovich, among

others, led the way in studying the implications of these new ideas for cosmology, whereas a

somewhat more rigid disciplinary divide persisted throughout the 70s in America and England.
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A number of scientists proposed that the very early universe passed through a de Sitter-like

phase, the characteristic feature of inflationary cosmology, before Guth’s seminal paper. Finally,

we will see below that the fine-tuning problems bothering Misner and others were not the sole

driving force in the development of these ideas.

The discussion below focuses on the different proposals that the early universe passed

through an early de Sitter-like phase, with the aim of clarifying both the motivations for de-

veloping such theories and the theoretical tools used in these accounts. Roughly speaking, there

were three different reasons to introduce such a radical alteration of the early universe. First, few

cosmologists of the 60s and 70s shared Misner’s tolerance for spacetime singularities. Instead,

their abhorrence of the initial singularity was strong enough to motivate a speculative modifica-

tion of the FLRW expansion. Several authors realized independently that one could evade the

Hawking-Penrose singularity theorems if the early universe somehow began in a vacuum state.

As we will see below, such a state would violate one of the crucial assumptions of the theorems,

a requirement that matter-energy density has a focusing effect. The second rationale bears some

similarity to the reasoning behind Lemaı̂tre’s “primeval atom” hypothesis, with its focus on a

quantum mechanical account of the initial creation event. A number of physicists were hopeful

that new ideas in fundamental physics would provide the proper theoretical framework for an

account of “creation.” For example, a group of physicists in Brussels proposed that the “creation

event” could be understood as a symmetry breaking phase transition that sparked the formation

of a de Sitter-like bubble, which eventually slowed to FLRW expansion. Third, an early de Sitter

stage emerged as the consequence of developments in two different areas in physics. Starobinsky

found that the de Sitter solution is an unstable solution to the field equations in the semi-classical
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approach, when one-loop quantum corrections to 〈Tab〉 are included in the source term, and con-

structed a cosmological model based on this insight. The application of GUTs to early universe

cosmology generated a great deal of interest and introduced a number of novel possibilities for

early universe cosmology. In particular, several physicists independently discovered that the

Higgs field (a component of the GUTs) trapped in a false vacuum state would drive a transient

de Sitter-like phase.

These proposals shared two common problems. First, what was the source of an early

vacuum-like state postulated to dominate the expansion in the early universe? Second, how could

an early de Sitter-like phase make a transition into FLRW expansion, during which the vacuum

is converted to the incredibly high matter and radiation densities required by the hot big bang

model? As we will see below, these problems were approached with a wide variety of theoretical

tools and differing degrees of success.

This chapter proceeds as follows. Section 1 focuses on two approaches motivated by the

desire to eliminate the singularity, the phenomenological approach of Gliner and Dymnikova

and Starobinsky’s model. The next section turns to the history of quantum field theory, for

a brief discussion of symmetry breaking and the development of the Standard Model. This

leads up to a discussion of the use of symmetry breaking ideas in various approaches to early

universe cosmology. Section 3 focuses on research regarding early universe phase transitions.

Early results indicated a stark conflict with cosmological theory and observation. Despite this

inauspicious beginning, within a few years early universe phase transitions appeared to be a

panacea for the perceived ills of standard cosmology rather than a source of wildly inaccurate

predictions.
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3.1 Eliminating the Singularity

3.1.1 Λ in the USSR

Two Soviet physicists independently suggested that densities reached near the big bang

would lead to an effective equation of state similar to a relativistic vacuum: Andrei Sakharov, the

famed father of the Soviet H-bomb and dissident, considered the possibility briefly in a study of

galaxy formation (Sakharov 1966), and a young physicist at the Ioffe Physico-Technical Institute

in Leningrad, Erast Gliner, noted that a vacuum-like state would counter gravitational collapse

(Gliner 1966). Four further papers over the next decade developed cosmological models on this

shaky foundation (Gliner 1970; Sakharov 1970; Gliner and Dymnikova 1975; Gurevich 1975),

in the process elaborating on several of the advantages and difficulties of an early de Sitter phase.

Gliner’s paper took as its starting point an idea that has been rediscovered repeatedly:

a non-zero cosmological constant Λ may represent the gravitational effect of vacuum energy.1

Gliner (1966) and others noted that Λ could be treated as a component of the stress-energy tensor,

Tab = −ρV gab (where “V” denotes vacuum); a Tab with this form is the only stress energy tensor

compatible with the requirement that the vacuum state is locally Poincaré invariant.2 The stress-

energy tensor for a perfect fluid is given by

Tab = (ρ + p)uaub + pgab, (3.1)

1Lemaı̂tre (1934) appears to have been the first to clearly state this idea in print. See Earman (2002)
for an account of Λ’s checkered history, and Rugh and Zinkernagel (2001) for a detailed discussion of the
relation between Λ and vacuum energy density in QFT.

2Gliner takes the following requirement to be the defining property of a relativistic vacuum (what he
calls the “µ - vacuum”): that interactions between ordinary matter and the vacuum cannot depend on
velocity, since the co-moving frame for any particle of ordinary matter will be at rest with respect to the
vacuum. Although Gliner is only concerned with local Poincar é invariance, he does not recognize the
difficulties in extending Poincar é invariance to general relativity. As a result, in general the “vacuum”
cannot be uniquely specified by requiring that it is a Poincar é invariant state. I thank John Earman for
emphasizing this point to me (cf. Earman 2002, 208-209).



74

where u
a represents the normed velocity of the perfect fluid, ρ is the energy density and p

is pressure. The vacuum corresponds to an ideal fluid with energy density ρV

(

= Λc2

8πG

)

and

pressure given by pV = −ρV ; this violates the strong energy condition, often characterized as

a prerequisite for any “physically reasonable” classical field.3 Yakov Zel’dovich, whom Gliner

thanked for critical comments, soon published more sophisticated studies of the cosmological

constant and its connection with vacuum energy density in particle physics (Zel’dovich 1967,

1968). The main thrust of Gliner’s paper was to establish that a vacuum stress-energy tensor

should not be immediately ruled out as “unphysical,” whereas Zel’dovich (1968) proposed a

direct link between Λ and the zero-point energy of quantum fields.

The novelty of Gliner’s paper lies in the conjecture that high density matter somehow

makes a transition into a vacuum-like state. Gliner motivated this idea with a stability argument

(cf. Gliner 1970), starting from the observation that matter obeying an ordinary equation of state

is unstable under gravitational collapse. For normal matter and radiation, the energy density ρ

increases without bound during gravitational collapse and as one approaches the initial singular-

ity in the FLRW models.4 However, Gliner recognized that the energy density remains constant

in a cosmological model with a vacuum as the only source. The solution of the field equa-

tions in this case is de Sitter space, characterized by exponential expansion a(t) ∝ e
χt, where

(χ)
2

= (8π/3)ρV and the scale factor a(t) represents the changing distance between fundamen-

tal observers. During this rapid expansion the vacuum energy density remains constant, but the

3The strong energy condition requires that there are not tensions larger than or equal to the (pos-
itive) energy density; more formally, for any time-like vector v, Tabv

a
v

b ≥ 1
2T

a

a
. In particular, for

a diagonalized Tab with principal pressures pi, this condition requires that ρ +
∑3

i=1
pi ≥ 0 and

ρ + pi ≥ 0(i = 1, 2, 3), clearly violated by the vacuum state.
4Turning this rough claim into a general theorem requires the machinery used by Penrose and Hawk-

ing. Gliner refers to Hawking’s work in Gliner (1970), but his argument does not take such finer points
into account.
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energy density of other types of matter is rapidly diluted. Thus extended expansion should even-

tually lead to vacuum domination as the energy density of normal matter becomes negligible in

comparison to vacuum energy density.5 It is not clear whether Gliner recognized this point. But

he did argue that if matter undergoes a transition to a vacuum state during gravitational collapse,

the result of the collapse would be a de Sitter “bubble” rather than a singularity. This proposal

avoids the conclusion of the Hawking-Penrose theorems by violating the assumption that matter

obeys the strong energy condition. In effect, Gliner prefered a hypothetical new state of mat-

ter violating the strong energy condition to a singularity, although he provides only extremely

weak plausibility arguments suggesting that “vacuum matter” is compatible with contemporary

particle physics.6

By contrast with Gliner’s outright stipulation, Sakharov (1966) hoped to derive general

constraints on the equation of state at high densities by calculating the initial peturbations pro-

duced at high densities and then comparing the evolution of these perturbations to astronomical

observations. Sakharov argued that at very high densities (on the order of 2.4 × 10
98 baryons

per cm
3!) gravitational interactions would need to be taken into account in the equation of state.

Although he admitted that theory was too shaky to calculate the equation of state in such situa-

tions, he classified four different types of qualitative behavior of the energy density as a function

of baryon number (Sakharov 1966, 74-76). This list of four included an equation of state with

p = −ρ, and Sakharov noted that feeding this into FLRW dynamics yields exponential expan-

sion. But the constraints Sakharov derived from the evolution of initial perturbations appeared

5This was formulated more clearly as a “cosmic no hair theorem” by Gibbons and Hawking (1977)
and in subsequent work. “No hair” alludes to corresponding results in black hole physics, which show
that regardless of all the “hairy” complexities of a collapsing star, the end state can be described as simply
as a bald head.

6Gliner was not alone in this preference; several other papers in the early 70s discussed violations of
the strong energy condition as a way of avoiding the singularity, as we will see in the next section.



76

to rule this out as a viable equation of state. In a 1970 preprint (Sakharov 1970), Sakharov

again considered an equation of state ρ = −p, this time as one of the seven variants of his

speculative “multi-sheet” cosmological model.7 This stipulation was not bolstered with new ar-

guments (Sakharov cited Gliner), but as we will see shortly Sakharov discovered an important

consequence of an early vacuum state.

Three later papers developed Gliner’s suggestion and hinted at fruitful connections with

other problems in cosmology. Gliner and his collaborator, Irina Dymnikova, then a student at the

Ioffe Institute, proposed a cosmological model based on the decay of an initial vacuum state into

an FLRW model, and one of Gliner’s senior colleagues at the Institute, L. E. Gurevich, pursued

a similar idea. According to Gliner and Dymnikova (1975)’s model, an initial fluctuation in

the vacuum leads to a closed, expanding universe. The size of the initial fluctuation is fixed by

the assumption that ȧ = 0 at the start of expansion. The vacuum cannot immediately decay

into radiation. This would require joining the initial fluctuation to a radiation-dominated FLRW

model, but as a consequence of the assumption this model would collapse rather than expand—

the closed FLRW universe satisfies ȧ = 0 only at maximum expansion.8 Rather than postulating

a sudden transition, Gliner and Dymnikova (1975) stipulate the following ansatz for the equation

7Briefly, Sakharov’s multi-sheet model is a cyclic model based on Novikov’s suggestion that a true
singularity could be avoided in gravitational collapse, allowing continuation of the metric through a stage
of contraction to re-expansion. I have been unable to find any discussions of the impact of Sakharov’s
imaginative work in cosmology or its relation to other lines of research he pursued, especially the attempt
to derive gravitational theory as an induced effect of quantum fluctuations, but this is surely a topic worthy
of further research.

8This point is clearly emphasized by Lindley (1985); although it appears plausible that this line of
reasoning motivated Gliner and Dymnikova (1975), they introduce the “gradual transition” without ex-
planation or elaboration.
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of state during a gradual transition:9

ρ + p = γρ1

(ρ0 − ρ)
α

(ρ0 − ρ1)
α , (3.2)

based on the idea that the vacuum matter decays as the de Sitter bubble grows. The parameter α

is assumed to satisfy 0 < α < 1, and γ is the term appearing in the equation of state for a perfect

fluid, p = (γ − 1)ρ. For ρ = ρ0, the equation of state is just p = −ρ, but the transition (with

the rate set by α) leads to ρ = ρ1 and the equation of state for normal matter. The scale factor

and the mass of the universe both grow by an incredible factor during this transitional phase,

as Gliner and Dymnikova (1975) duly note; however, there is no discussion of whether this is a

desirable feature of the model.

This proposal replaces the singularity with a carefully chosen equation of state, but Gliner

and Dymnikova (1975) give no physical motivation guiding these choices. There is no indication

of a link with other areas of physics that might provide a more specific, well-motivated model.

Instead, details of the transition are set by matching the entropy generated during the transition

with observational constraints. As a result of this phenomenological approach, Gliner and Dym-

nikova (1975) failed to recognize one of the characteristic features of a de Sitter-like phase. In

particular, the following equation relates parameters of the transition (the initial and final energy

densities, ρ0 and ρ1, and the “rate” set by the constant α ) to present values of the matter and

9An alert reader may have noticed the tension between this assumption and vacuum dominance men-
tioned in the last paragraph: this equation of state guarantees the opposite, namely that the vacuum is
diluted and the density of normal matter and radiation increases in the course of the transition.
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radiation density (ρp, ρrp):10

√
ρ1

ρrp

exp

(
2(ρ0 − ρ1)

3γρ1(1 − α)

)

=
ρ0

ρp

(

1 − 3H
2

8πGρp

)−1

. (3.3)

This equation indicates how the length of the transitional phase effects the resulting FLRW

model: for a “long” transitional phase, ρ1 is small, and the left hand side of the equation is

exponentially large. This forces the term in parentheses on the right hand side to be exponentially

small, so that H
2 approaches 8πGρp

3 , the Hubble constant for a flat FLRW model. Four years

later, Guth would label his discovery of this feature a “Spectacular Realization,” but Gliner and

Dymnikova (1975) took no notice of it.

Gurevich and Sakharov both had a clearer vision of the possible cosmological implica-

tions of Gliner’s idea than Gliner himself. Gurevich (1975) noted that an initial vacuum domi-

nated phase would provide the “cause of cosmological expansion.” Gurevich clearly preferred an

explanation of expansion that did not depend on the details of an initial “shock” or “explosion,”

echoing a concern first voiced in the 30s by the likes of Sir Arthur Eddington and Willem de Sit-

ter.11 Gurevich aimed to replace various features of the initial conditions—including the initial

value of the curvature, the “seed fluctuations” needed to form galaxies, and the amount of en-

tropy per baryon—with an account of the formation and merger of vacuum-dominated bubbles in

the early universe. The replacement was at this stage (as Gurevich admitted) only a “qualitative

picture of phenomena” (Gurevich 1975, p. 69), but the goal itself was clearly articulated.

10Gliner and Dymnikova (1975) derive this equation by solving for the evolution of the scale factor
from the transitional phase to the FLRW phase, with matching conditions at the boundary; see Lindley
(1985) for a clearer discussion. The constant 0 < α < 1 fixes the rate at which the initial vacuum energy
decays into energy density of normal matter and radiation. H is Hubble’s constant.

11Eddington (1933, 37) and de de Sitter (1931, 9-10) both argued that a non-zero Λ was needed for
a satisfactory explanation of expansion, despite the fact that the FLRW models with Λ = 0 describe
expanding models; I thank John Earman for bringing these passages to my attention.
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Gurevich failed to recognize, however, the implications of a vacuum-dominated phase

for a problem he emphasized as a major issue in cosmology: Misner’s horizon problem. Recall

that horizons in relativistic cosmology mark off the region of spacetime from which light signals

could have reached an observer (see Appendix A.3 for a brief reminder). As we saw above,

Misner (1969b) had suggested that more realistic models of the approach to the singularity would

include “mixmaster oscillations,” effectively altering the horizons to allow spacetime enough

for causal interactions. By the mid 70s a number of Gurevich’s comrades (along with British

cosmologists and Misner himself) had put the idea to rest. But mixmaster oscillations were

unnecessary to solve the horizon problem; as Sakharov recognized, an odd equation of state

would suffice:12

If the equation of state is ρ ≈ S
2/3 [where S is baryon number density; this is

equivalent to p = − ρ
3 ], then a ≈ t and the Lagrangian radius of the horizon is

∫ t1

t0

dt

a
→ ∞ as t0 → 0, (3.4)

i.e., the horizon problem is resolved without recourse to anisotropic models.

To my knowledge this is the earliest “solution” of the horizon problem along these lines. (It is

a solution only in the sense that altering the horizon structure makes causal interactions possi-

ble, but it does not specify an interaction that actually smooths out chaotic initial conditions.)

Sakharov’s colleagues at the Institute of Applied Mathematics in Moscow, notably including

Igor Novikov and Zel’dovich, were probably aware of this result, although Novikov has com-

mented that Sakharov’s “wild ideas” seemed “utterly incomprehensible” at the time (Altshuler

12Sakahrov’s equation of state is not that for a vacuum dominated state, although it is easy to see that
the integral diverges for p = −ρ as well.
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et al. 1991, p. 474). It appeared buried in the Appendix of a preprint that was only widely

available following the publication of the Collected Works in 1982.

3.1.2 Starobinsky’s Model

During a research year in Cambridge in 1978-79, Zel’dovich’s protégé Alexei Starobin-

sky developed an account of the early universe based on including quantum corrections to the

stress-energy tensor in EFE. Starobinsky was one of the main players in the development of

semi-classical quantum gravity; his early work with Zel’dovich focused on particle creation in

strong gravitational fields, and he had a part in discovering the Hawking effect. He clearly shared

Gliner and Dymnikova’s desire to avoid the initial singularity, and his model also includes an

early de Sitter phase. But there the similarity with Gliner and Dymnikova’s work ends.13 Unlike

Gliner and Dymnikova’s sterile phenomenological approach, Starobinsky’s model drew on a rich

source of ideas: recent results in semi-classical quantum gravity.

Throughout the 70s Starobinsky was one of the main players in Zel’dovich’s active

team of astrophysicists at the Institute of Applied Mathematics, focusing primarily on semi-

classical quantum gravity. Starobinsky brought considerable mathematical sophistication to bear

on Zel’dovich’s insightful ideas, including the study of particle production in strong gravitational

fields and the radiation emitted by spinning black holes (a precursor of the Hawking effect).

The relationship between the energy conditions and quantum effects was a recurring theme in

this research. In response to Hawking’s alleged “no go theorem,” Zel’dovich and Pitaevsky

13Starobinsky (1979) explicitly distances himself from Gliner: the effective equation of state in his
model, while the same as in Gliner’s models, follows from quantum gravity effects rather than a bald
stipulation.
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(1971) showed that during particle creation the effective Tab violates the dominant energy con-

dition.14 Energy conditions might be violated as a consequence of effects like particle creation,

but Starobinsky was unwilling to introduce new fields solely to violate the energy conditions.

Shortly before developing his own model, Starobinsky criticized Parker and Fulling (1973)’s

proposal that a coherent scalar field would violate the strong energy condition and lead to a

“bounce” rather than a singularity, pointedly concluding that “there is no reason to believe that

at ultrahigh temperatures the main contribution to the energy density of matter will come from a

coherent scalar field” (Starobinsky 1978, 84).15

Starobinsky (1979, 1980)’s model accomplished the same result without introducing fun-

damental scalar fields. By incorporating quantum effects Starobinsky found a class of cosmo-

logical solutions that begin with a de Sitter phase, evolve through an oscillatory phase, and

eventually make a transition into an FLRW expanding model. In the semi-classical approach,

the classical stress-energy tensor is replaced with its quantum counterpart, the renormalized

stress-energy tensor 〈Tab〉, but the metric is not upgraded. Calculating 〈Tab〉 for quantum fields

is a tricky business due to divergences, but several different methods were developed to handle

this calculation in the 70s. Starobinsky’s starting point was the one-loop correction to 〈Tab〉 for

massless, conformally invariant, non-interacting fields. Classically the trace for such fields van-

ishes, but due to regularization of divergences 〈Tab〉 includes the so-called “trace anomaly.”16

14Hawking (1970)’s theorem showed that a vacuum spacetime would remain empty provided that the
dominant energy condition holds. The dominant energy condition requires that the energy density is
positive and that the pressure is always less than the energy density; formally, for any timelike vector v,
Tabv

a
v

b ≥ 0 and Tabv
a is a spacelike vector.

15Bekenstein (1975) also discussed the possibility that scalar fields would allow one to avoid the sin-
gularity. Starobinsky (1978)’s main criticism is that Parker and Fulling dramatically overestimate the
probability that their model will reach a “bounce” stage, even granted that the appropriate scalar field
exists: they estimate a probability of 0.5, whereas Starobinsky finds 10

−43!
16The expression for the trace anomaly was derived before Starobinsky’s work; in addition, it was

realized that de Sitter space is a solution of the semi-classical EFE incorporating this anomaly (see, e.g.
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Taking this anomaly into account, Starobinsky derived an analog of the Friedman equations and

found a set of solutions to these equations.17 This establishes the existence (but not uniqueness)

of a solution that begins in an unstable de Sitter state before decaying into an oscillatory solu-

tion. Using earlier results regarding gravitational pair production, Starobinsky argued that the

oscillatory behavior of the scale factor produces massive scalar particles (“scalarons”). Finally,

the matter and energy densities needed for the onset of the standard big bang cosmology were

supposedly produced via the subsequent decay of these scalarons.

In the course of studying this model, Starobinsky mentions an observational constraint

that simplifies the calculations considerably (Starobinsky 1980, p. 101):

If we want our solution to match the parameters of the real Universe, then [the
de Sitter stage] should be long enough: Ht0 >> 1, where t0 is the moment of
transition to a Friedmann stage. This enables us to neglect spatial curvature terms
... when investigating the transition region.

In a conference paper delivered in 1981 at the Moscow Seminar on Quantum Gravity (published

three years later as Starobinsky 1984), Starobinsky repeated a portion of this earlier paper with

a page of new material added. This added material explains in greater detail that an extended

de Sitter phase drives Ω very close to 1. But Starobinsky still does not present this aspect of

the model as a major selling point: he comments that an extended de Sitter phase is necessary

simply to insure compatibility with observations, and he does not further comment on whether an

extended de Sitter phase is natural in the context of his model. His more detailed discussion was

Birrell and Davies 1982). Starobinsky was the first to consider the implications of these results for early
universe cosmology.

17In the course of this calculation Starobinsky assumed that initially the quantum fields are all in a
vacuum state. In addition, the expression for the one-loop correction includes constants determined by
the spins of the quantum fields included in 〈Tab〉, and these constants must satisfy a number of constraints
for the solutions to hold. Finally, Starobinsky argued that if the model includes a large number of gravita-
tionally coupled quantum fields, the quantum corrections of the gravitational field itself will be negligible
in comparison.
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clearly motivated by Guth (1981) (which he cites), but his methodology still differs starkly from

Guth’s. Starobinsky’s approach requires choosing the de Sitter solution, with no aim of showing

that it is a “natural” state; as Starobinsky puts it, “This scenario of the beginning of the Universe

is the extreme opposite of Misner’s initial ‘chaos.”’18 In particular, his model takes the maximally

symmetric solution of the semi-classical EFE as the starting point of cosmological evolution,

rather than an arbitrary initial state as Guth suggests. In this assumption he was not alone:

several other papers from the Moscow conference similarly postulate that the universe began

in a de Sitter state (see, for example, Grib et al. 1984; Lapchinksy et al. 1984, and references

therein).

Starobinsky’s model led to two innovative ideas that held out some hope of observation-

ally testing speculations about the early universe. The first of these was Starobinsky’s prediction

that an early de Sitter phase would leave an observational signature in the form of gravitational

waves. Starobinsky (1979) calculated the spectrum of long-wavelength gravitational waves, and

argued that in the frequency range of 10
−3 − 10

−5 Hz an early de Sitter phase would produce

gravitational waves with an amplitude not far beyond the limits of contemporary technology.

Zel’dovich was thrilled at the prospect (Zel’dovich 1981, p. 228): “For this it would be worth

living 20 or 30 years more!” Mukhanov and Chibisov (1981) introduced a second idea that

would carry over to later early universe models: they argued that zero-point fluctuations in an

initial vacuum state would be amplified during the expansion phase, leading to density pertur-

bations with appropriate properties to seed galaxy formation. Both of these ideas underlie later

18Indeed, Starobinsky acknowledges that the instability of the de Sitter solution indicates that it is not
generic. Starobinsky (1979) describes his approach as postulating that de Sitter space is a solution of the
full equations of quantum gravity (p. 684).
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attempts (discussed further in Chapter 4) to identify a unique observational footprint of an early

de Sitter-like phase.

Starobinsky’s proposal created a stir in the Russian cosmological community: it was

widely discussed at the Moscow Seminar on Quantum Gravity 1981, and Zel’dovich — un-

doubtedly the dominant figure in Soviet cosmology, both in terms of his astounding physical

insight and his institutional role as the hard-driving leader of the Moscow astrophysicists —

clearly regarded the idea as a major advance. Zel’dovich (1981) reviewed the situation with his

typical clarity. One of the appealing features of Starobinsky’s model, according to Zel’dovich,

was that it provided an answer to embarassing questions for the big bang model, “What is the

beginning? What was there before the expansion began [...]?” In Starobinsky’s model the “ini-

tial state” was replaced by a de Sitter solution, which continued to t → −∞. But Zel’dovich

noted two other important advantages of Starobinsky’s model. First, it would solve the horizon

problem:19

An important detail of the new conception is the circumstance that the de Sitter
law of expansion solves the problem of causality in its stride. Any two points or
particles (at present widely separated) were, in the distant de Sitter past, at a very
small, exponentially small distance. They could be causally connected in the past,
and this makes it possible, at least in principle, to explain the homogeneity of the
Universe on large scales. (Zel’dovich 1981, p. 229)

Second, perturbations produced in the transition to an FLRW model might produce gravitational

waves as well as the density perturbations needed to seed galaxy formation. But Zel’dovich also

emphasized the speculative nature of this proposal, concluding optimistically that “there is no

19Zel’dovich’s review does not include any references. He had already discussed the horizon problem
in a different context (Zel’dovich et al. 1975), see section 3.3 below.
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danger of unemployment for theoreticians occupied with astronomical problems” (Zel’dovich

1981, p. 229).

3.2 Hidden Symmetry

The understanding of symmetries in QFT changed dramatically in the 60s due to the real-

ization that field theories may exhibit spontaneous symmetry breaking (SSB). A typical one-line

characterization of SSB is that the vacuum state of a broken symmetry theory does not share

the full symmetries of the fundamental Lagrangian.20 Symmetry breaking in this loose sense

is all too familiar in physics: solutions to a set of differential equations typically do not share

the full symmetries of the equations. The novel features of symmetry breaking in QFT arise

as a result of a mismatch between symmetries of the Lagrangian and symmetries which can

be implemented as unitary transformations on the Hilbert space of states. The latter notion is

familiar from non-relativistic quantum mechanics: an exact symmetry S on the Hilbert space

H preserves transition probabilities, i.e. for rays Φ,Φ
′
,Ψ,Ψ

′, S maps rays onto rays such that

|〈Φ,Ψ〉|2 = |〈Φ′
,Ψ

′〉|2. A famous theorem due to Wigner demonstrates that such symmetries

can be implemented by unitary transformations on H.21 Now consider a Lagrangian L invari-

ant under a continuous global or internal symmetry. Roughly, systems for which a particular

symmetry of the Lagrangian cannot be unitarily implemented on H exhibit SSB (see (B.1) for

a more careful discussion). Typical characterizations of SSB focus on the consequences of this

20Coleman (1985), for example, characterizes SSB as the conjecture that “the laws of nature may
possess symmetries which are not manifest to us because the vacuum state is not invariant under them”
(p. 116).

21More precisely, Wigner showed that any S can be implemented by either a unitary and linear or an
anti-unitary and anti-linear operator (see Weinberg 1995, Chapter 2 for a proof).
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failure: observables acquire non-invariant vacuum expectation values, and the vacuum is degen-

erate. The idea of symmetry breaking was originally developed in relation to condensed matter

systems with these features and only later imported into field theory by Nambu and others.

The study of SSB in field theory led to a revival of interest in gauge theories of the

weak and strong interactions. Yang-Mills style gauge theories seemed to require massless gauge

bosons (like the photon), in stark conflict with the short range of the weak and strong interac-

tions. Adding mass terms for the gauge bosons directly to the Lagrangian would break its gauge

invariance and, according to the conventional wisdom, render the theory unrenormalizable. SSB

garnered a great deal of attention in the early 60s—at least one prominent theorist “fell in love

with this idea” (Weinberg 1980, p. 515), and these research efforts (along with Weinberg’s “love

affair”) eventually led to the idea that SSB could be used to “fix” Yang-Mills style gauge theory

by indirectly giving mass to the gauge bosons. Weinberg and Salam independently proposed

unified gauge theories of the weak and electromagnetic interactions incorporating SSB. On the

heels of the success of these theories, physicists were willing to take SSB as something more

than formal manipulations of the Lagrangian; instead, they began to speculate about the possible

implications of symmetry breaking understood as a dynamical process in the early universe.

3.2.1 Spontaneous Symmetry Breaking and the Higgs Mechanism

Although the idea of broken symmetry was introduced long before the 60s, its fundamen-

tal importance for particle physics was recognized only in the late 50s and early 60s, as Nambu
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and others studied SSB in field theory based on a fruitful analogy with the Bardeen-Cooper-

Schrieffer (BCS) theory of superconductivity.22 The seminal BCS paper (Bardeen et al. 1957)

made no reference to symmetry breaking, focusing instead on a detailed dynamical model of

superconductivity, but critics of the theory noted that calculations worked only with a particular

choice of gauge (Buckingham 1957; Schafroth 1958). Following the original BCS paper, several

physicists (Nambu and Anderson, in particular) explored the connection between the appealing

features of the BCS theory—such as the prediction of a gap in the energy spectrum of a supercon-

ductor and the explanation of the Meissner effect23—and the theory’s lack of gauge invariance.

Nambu (1961) and Anderson (1958) both argued that taking massless longitudinal collective

modes into account would insure gauge invariance, and in addition that Coulomb interactions

would cause these collective modes to acquire mass. Motivated by the similarity between these

features of superconductivity and earlier models of hadrons, Nambu and his collaborator Jona-

Lasinio (Nambu and Jona-Lasinio 1961a,b) developed a model of pions incorporating symmetry

breaking and suggested that SSB may play a fundamental role in particle physics.

A general result due to Goldstone seemed to doom symmetry breaking in particle physics

barely after its inception: Goldstone conjectured and later proved (with Salam and Weinberg,

Goldstone 1961; Goldstone et al. 1962) that SSB of a continuous symmetry implies the existence

22See Brown and Cao (1991) for a more detailed early history of SSB and discussion of its integration
into QFT, as well as the first-hand accounts of Nambu, Higgs, and others collected in Chapter 28 of
Hoddeson et al. (1997). The following brief account relies rather heavily on these sources.

23This gap is due to the correlations existing between “Cooper pairs,” pairs of electrons created via
interactions with the background crystal lattice in the BCS ground state. Very roughly, the distortion of
the lattice caused by one electron’s motion and its Coulumb attraction on the positive ions composing the
lattice may persist long enough to affect the motion of a second electron (i.e., phonon exchange between
the electrons results in an attraction); somewhat counterintuitively, even a very small attraction mediated
by the lattice can produce pairing if the two electrons are immersed in a dense fluid of electrons. Heat
capacity and other thermodynamic properties of superconductors reflect the existence of this energy gap,
and the accurate prediction of the energy gap was a major success of the BCS theory. The Meissner
effect refers to the expulsion of magnetic fields from the interior of a superconductor. Some more recent
treatments, such as Weinberg (1996), §21.6, show that this is a direct consequence of the breaking of
electromagnetic gauge invariance in a superconductor.
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of a spin-zero massless boson. Goldstone et al. (1962) introduce the “effective potential” V (φ) in

one of the three proofs they give of Goldstone’s theorem, which I will briefly review here. V (φ)

includes all terms in the Lagrangian other than the kinetic terms (terms of the form (∂µφ)
2); for

the simple φ
4 theory,

L =
1

2
(∂µφ)

2 − V (φ) where V (φ) =
1

2
m

2
φ

2
+

λ

4!
φ

4
. (3.5)

The effective potential is identified with the effective energy density of the quantum fields, as it

is in classical field theory (see Coleman 1985, pp. 138-142, and references therein). In standard

φ
4 theory with V (φ) defined as above, the classical minimum of the potential lies at φ0 = 0.24

However, changing the sign of the m
2 term leads to a double minimum of the effective potential

at φ
′
0

= ±
√

6
λm. This feature of the potential indicates that φ0 = 0 is no longer the true

ground state of the field, since it has a higher energy than either of the φ
′
0

states.25 Thus, in order

to define our field operators in terms of creation and annihilation operators with respect to the

true ground state, we need to “subtract off” the vacuum expectation value of φ
′
0
. To do this we

introduce a shifted field variable defined by φ(x) = φ
′
0
+ φ̄(x). In terms of φ̄(x), the Lagrangian

has the following form (dropping an overall constant):

L =
1

2
(∂µφ̄)

2 − 1

2
(2m

2
)φ̄

2 −
√

λ

6
mφ̄

3 − λ

4!
φ̄

4
. (3.6)

24This calculation is “classical” in that I am neglecting any higher order quantum corrections to V (φ)
and simply treating φ as a real scalar field. These results carry over to QFT as the “tree approximation”
(i.e., the approximation neglecting all Feynman diagrams with closed loops).

25One can also directly calculate the expectation value of the Hamiltonian for some suitably chosen
states (such as coherent states); 〈f |H |f〉 as a function of the coherent state |f〉 displays the same “double
minima” structure as V (φ).
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The new φ̄
3 interaction term hides the original symmetry transformation φ → −φ, and in addi-

tion the sign of the m
2 term is negative. The new Lagrangian appears to describe a simple scalar

field with a mass
√

2m and two distinct interactions; the relationship between the coupling

constants of these interactions and the mass of the field provides the only hint of the hidden

symmetry.

To obtain an example of Goldstone’s theorem we need to generalize the discrete sym-

metry of this case to a continuous symmetry. Consider a theory with three scalar fields with

identical masses, with the following Lagrangian:

L =
1

2
(∂µφ

i
)
2 − V (φ

i
) where V (φ

i
) = −1

2
m

2
(φ

i
)
2
+

λ

4!
[(φ

i
)
2
]
2

(3.7)

(where i = 1, 2, 3—the different fields have been treated as components of a single field vector—

with summation over i). The Lagrangian is invariant under the action of the three-dimensional

rotation group O(3) on field space. As in the case above, the minimum energy configuration

corresponds to non-zero vacuum expection values of the field φ
i; in particular, the constant field

(φ
i

0
)
2

= 6m2

λ minimizes the effective potential. This condition determines only the length of the

field vector φ
i

0
and not its direction, so we can arbitrarily choose the direction of φ

i

0
to coincide

with the i = 3 field. Shifting the field variables as above,

φ
i
(x) =

√

6

λ
mδ

i

3
+ φ̄i(x), (3.8)

leads to the following expression for the effective potential:

V (φ̄
i
) = m

2
(φ̄3)

2
+

√

6

λ
mφ̄3(φ̄

i)
2
+

λ

4!
[(φ̄

i
)
2
]
2
. (3.9)
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Only the φ̄3 field has a corresponding mass term—the φ̄1 and φ̄2 fields both appear to be mass-

less, and the explicit φ̄3 interaction term breaks the O(3) invariance of the original Lagrangian.

The Lagrangian written in terms of the shifted variables is still invariant under O(2) rotations

around the φ̄3 axis, which mix only the φ̄1 and φ̄2 fields. The symmetries corresponding to

rotations around the φ̄1 and φ̄2 axes have both been broken, and corresponding to each broken

symmetry there is a massless scalar field.

Based on a similar calculation for a specific model, Goldstone conjectured that in general

a massless scalar field appears for every broken continuous symmetry. Of the three proofs of

this conjecture given in Goldstone et al. (1962), the simplest demonstrates that SSB entails the

existence of a p
2

= 0 (zero-mass) pole in the field propagators for some of the shifted fields.26

Suppose that we have a Lagrangian involving several fields, φ
a
(x), such that given constant

fields φ
a

0
minimize the effective potential. Writing out V as an expansion around this minimum,

we have

V (φ) = V (φ0) +
1

2
(φ − φ0)

a
(φ − φ0)

b

(

∂
2
V

∂φa∂φb

)

φ0

+ · · · . (3.10)

The coefficient of the second term (a symmetric matrix) is equal to the inverse of the momentum-

space propagator,27

(

∂
2
V

∂φa∂φb

)

= ∆
−1

ab
(p). (3.11)

A continuous symmetry transformation has the general form φ
a
(x) → φ

a
+ iεT

α a

b
φ

b
(x) (sum-

mation over b understood, α labels distinct generators of the symmetry group). Assuming that

26See Weinberg (1996), §19.2 for two of the original proofs in updated notation, which I will follow
here.

27See Weinberg (1996), Chapter 16 for justification of this equality.
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the original Lagrangian is invariant under this transformation,

V (φ
a
) = V (φ

a
+ iεT

α a

b
φ

b
), (3.12)

which can be rewritten as

T
α a

b
φ

b ∂V (φ)

∂φa = 0. (3.13)

Finally, taking another partial derivative with respect to φ
c, we have

(
∂V

∂φa

)

T
α a

c
+

(

∂
2
V

∂φa∂φc

)

T
α a

b
φ

b
= 0. (3.14)

Evaluating this expression at φ0, the first term must be zero since V is at a minimum, and thus

the second term must vanish. Symmetry breaking implies that T
α a

b
φ

b

0
6= 0, at least for some

choices of α, and it follows that the matrix has a zero eigenvalue with the eigenvector T
α a

b
φ

b

0

for these generators. This in turn implies that the propagator has a pole at zero momentum,

corresponding to the existence of a massless spin-zero particle.

Goldstone et al. (1962) concluded by reviewing the dim prospects for SSB. Weinberg

added an epigraph from King Lear (”Nothing will come of nothing: speak again”) to indicate

his dismay, which was (fortunately?) removed by the editors of The Physical Review (Weinberg

1980, p. 516). What is to be done with the massless, spinless bosons (aka “Goldstone bosons”)

produced by symmetry breaking? They rejected the possibility that the Goldstone bosons really

do exist, on the grounds that such strongly coupled massless particles would have already been

detected experimentally. They also did not see any way to modify the particle interpretation

of the theory in order to “cancel” the Goldstone bosons, along the lines of the cancellation
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of the timelike and longitudinal components of the electromagnetic field in the Gupta-Bleuler

formalism in QED.28 However, they did note that Goldstone’s theorem does not apply either to

discrete or gauge symmetries (Goldstone et al. 1962, p. 970):

Goldstone has already remarked that nothing seems to go wrong if it is just discrete
symmetries that fail to leave the vacuum invariant. A more appealing possibility is
that the “ur symmetry” broken by the vacuum involves an inextricable combination
of gauge and space-time transformations.

Several different physicists pursued this loophole in Goldstone’s theorem, and independently

discovered what is now called the “Higgs mechanism.”

Anderson was the first to discuss the possibility that breaking a gauge symmetry might

cure the difficulties with Yang-Mills theory (by giving the gauge bosons mass) without producing

Goldstone bosons. Anderson argued that in several condensed matter systems with SSB the

Goldstone bosons “become tangled up with Yang-Mills gauge bosons, and, thus, do not in any

true sense really have zero mass” (Anderson 1963, p. 422).29 In addition he suggested that

this “tangling” between Goldstone and gauge bosons could be exploited to introduce a massive

gauge boson in gauge theories:

It is likely, then, considering the superconducting analog, that the way is open for
a degenerate vacuum theory of the Nambu type without any difficulties involving
either zero-mass Yang-Mills gauge bosons or zero-mass Goldstone bosons. These
two types of bosons seem capable of “cancelling each other out” and leaving finite-
mass bosons only. (Anderson 1963, p. 441)

28Quantizing the electromagnetic field in Lortenz gauge leads to photons with four different polar-
ization states: two transverse, one longitudinal, and one “timelike” (or “scalar”). In the Gupta-Bleuler
formalism, the contributions of the longitudinal and timelike polarizations states cancel as a result of the
Lorentz condition ∂µA

µ
= 0, leaving only the two transverse states as true “physical” states. See Ryder

(1996), §4.4 for a brief description of the Gupta-Bleuler formalism.
29In the case of superconductivity, the “Goldstone mode” becomes a massive plasmon mode due to the

long-range Coulomb interactions.
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Anderson supported these provocative remarks with neither a field theoretic model nor an ex-

plicit discussion of the gauge theory loophole in Goldstone’s theorem. Peter Higgs has recently

commented that “Anderson’s remark was disbelieved at the time by those particle theorists who

read it, myself included!” (Higgs 1997, p. 506-7) due to these shortcomings. Regardless of this

disbelief, within a year of Anderson’s paper, Brout, Englert, Guralnik, Kibble and Higgs all pre-

sented field theoretic models in which gauge bosons acquire mass by “tangling” with Goldstone

bosons (Englert and Brout 1964; Guralnik et al. 1964; Higgs 1964). (Higgs won the naming con-

test.) Anderson’s work and the earlier work of Nambu on superconductivity stimulated Higgs’s

interest in symmetry breaking. After following a discussion of the dependence of Goldstone’s

proof on Lorentz covariance in Physical Review Letters,30 Higgs recognized that the failure of

manifest Lorentz covariance for particular gauge choices (such as Coulomb gauge in QED) al-

lows one to evade Goldstone’s theorem in gauge theories. Within a week of reading Gilbert

(1964), he formulated the simple field theory incorporating the Higgs mechanism presented in

Higgs (1964).

In the model presented by Higgs, the massless Goldstone modes disappear from the

physical particle spectrum, but in their ghostly gauge-dependent presence the vector bosons

acquire mass. Higgs began by coupling the simple scalar field of the Goldstone model with the

electromagnetic interaction. Take a model incorporating a two component complex scalar field,

such that φ = 1√
2
(φ1 − iφ2) and V (φ) = 1

2λ
2|φ|4 − 1

2µ
2|φ|2 (compare eqn. (3.7)).31 Including

30Klein and Lee (1964) and the response, Gilbert (1964); see Higgs (1997) for a short narrative of his
discovery.

31See also the clear presentation given in Aitchison (1982), which I draw on here.
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the electromagnetic interaction leads to the following Lagrangian:

L = (Dµφ)
†
(D

µ
φ) − V (φ) − 1

4
FµνF

µν
, (3.15)

where Fµν = ∂µAν − ∂νAµ, and D is the covariant derivative operator defined as Dµ = ∂µ +

ieAµ. This Lagrangian is invariant under the following gauge transformations:

φ(x) → e
−ieθ(x)

φ(x) (3.16)

Aµ → Aµ + ∂µθ, (3.17)

where e is a constant introduced for convenience. Higgs’ crucial insight was that a clever choice

of gauge can be used to “kill” one of the components of φ. Explicitly, we can rewrite φ as

follows:

φ(x) =
1√
2
(α + β(x))e

−iξ(x)
α . (3.18)

The gauge transformation (3.16) leads to φ
′
= e

−ieθ(x)
φ(x), and the judicious choice of θ(x) =

− 1
eαξ(x) exactly cancels the exponential term in (3.18). As a result, ξ(x) disappears from the

Lagrangian rewritten in terms of the gauge transformed fields

φ
′
=

1√
2
(α + β(x)) (3.19)

A
′
µ

= Aµ − 1

eα
∂µξ(x). (3.20)
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Neglecting an overall constant, the new Lagrangian is given by:

L = (
1

2
(∂µβ)(∂

µ
β) − 1

2
µ

2
β

2
) + (−1

4
F

′
µν

F
′µν

+
1

2
e
2
α

2
A

′
µ
A

′µ
) (3.21)

−1

8
λ

2
β

4 − 1

2
λ

2
αβ

3
+

1

2
A

′
µ
A

′µ
e
2
(β

2
+ 2αβ).

This Lagrangian displays several consequences of the Higgs mechanism: the massless Goldstone

modes have disappeared (there are no fields without a mass term), the β(x) field (aka the “Higgs

field”) has acquired a mass term, the ξ(x) field has been “hidden” as a longitudinal mode of the

vector field A
′
µ

, and the vector field has acquired a mass term (the fourth term above).

This list of interesting consequences of the Higgs mechanism follows from writing the

Lagrangian with a particularly clever gauge choice. But conventional wisdom associates phys-

ical content only with gauge- invariant quantities and cautions against taking gauge-dependent

quantities too seriously. So is the Higgs mechanism a piece of formal trickery devoid of phys-

ical content? Early studies of the Higgs mechanism (such as Kibble 1966) focused on isolating

the gauge-invariant content of the Higgs mechanism by considering different gauge choices. In

his 1973 Erice lectures, Sidney Coleman briefly raises worries about gauge invariance of the

formalism (Coleman 1985, p. 168):

People are sometimes worried that the formal apparatus for treating SSB ... is not
gauge invariant. This is true; the vacuum expectation value of a scalar field, the
effective potential, indeed the Feynman propagators themselves, are not gauge-
invariant objects. This is also irrelevant. ... There is nothing wrong with [using
gauge-dependent objects], as long as we are careful to express our final results in
terms of gauge-invariant quantities, like masses and cross sections. The occurence
of SSB does not affect this; the form of the effective potential and the location of its
minimum are indeed gauge-dependent, but the values of masses and cross-sections
computed with the aid of these objects are not.
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We will see below that this warning to pay attention to the difference between gauge-dependent

calculational tools and properly gauge-invariant physical content was not always taken to heart.

The Higgs mechanism provoked a great deal of interest; it could clearly be used to fix

and combine two appealing ideas, as Anderson had speculated. Yang-Mills-style gauge theo-

ries and the general idea of SSB faced the same roadblock: the prediction of massless particles

inconsistent with phenomenological constraints. The Higgs mechanism provided a way around

the roadblock, and some hoped that the newly open road would lead to a gauge theory of the

strong and weak interactions.32 Three years after Higgs’s paper, Weinberg incorporated the

Higgs mechanism in a unified theory of the electromagnetic and weak interactions (Weinberg

1967), and a similar model was discovered independently by Salam. These theories faced an-

other impressive roadblock, however: Weinberg, for example, tried to prove renormalizability of

the theory for several years without success (Weinberg 1980, p. 518). Without a proof of renor-

malizability or direct experimental support the Salam-Weinberg model drew little attention.33

Although theories with unbroken gauge symmetries were known to be renormalizable term-by-

term in perturbation theory, it was not clear whether shifting the fields in symmetry breaking

would spoil renormalizability. Progress in the understanding of renormalization (due to work

in the early 70s by ’t Hooft, Veltman, Lee and others) revealed another important advantage of

SSB: the renormalizability of a theory is actually unaffected by the occurrence of SSB. In the

lectures quoted above, Coleman advertises this as the main selling point of SSB (Coleman 1985,

p. 139).

32Englert and Brout (1964) explicitly mention the possibility: “The importance of this problem
[whether gauge mesons can acquire mass] resides in the possibility that strong-interaction physics origi-
nates from massive gauge fields related to a system of conserved currents.” The other papers introducing
the Higgs mechanism are more directly concerned with exploiting the loophole in Goldstone’s theorem.

33The number of citations of Weinberg (1967) jumped from 1 in 1970 to 62 in 1972, following ’t
Hooft’s proof of renormalizability (Hoddeson et al. 1997, p. 16).
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Testing the Higgs mechanism required a venture into uncharted territory. Although ac-

celerator experiments carried out throughout the 70s probed various aspects of the electroweak

theory (see, e.g., Pickering 1984), they did little to constrain or elucidate the Higgs mechanism

itself. Physicists continue to complain three decades later that the Higgs mechanism remains “es-

sentially untested” (Veltman 2000, 348). Although the Higgs mechanism was the simplest way

to reconcile a fundamentally symmetric Lagrangian with phenomenology, physicists actively

explored alternatives such as “dynamical” symmetry breaking.34 Indeed, treating the fundamen-

tally symmetric Lagrangian as a formal artifact rather than imbuing it with physical significance

was a live option. However, several physicists independently recognized that treating the Higgs

mechanism as a description of a physical transition that occurred in the early universe, rather

than as a bit of formal legerdemain, has profound consequences for cosmology. Weinberg em-

phasized at the outset that this line of research “may provide some sort of answer to the question”

of “whether a spontaneously broken gauge symmetry should be regarded as a true symmetry”

(Weinberg 1974b, p. 274).

3.2.2 Conformal Symmetry Breaking

The proof of renormalizability of the Weinberg-Salam model in 1971 led to a dramatic

increase in the study of unified gauge theories incorporating SSB, which was further enhanced

by the experimental detection of neutral currents (predicted by the theory) in 1973. Part of this

research effort was devoted to the study of symmetry restoration, the focus of the next section.

But in addition, the success of this model encouraged the application of symmetry breaking in

34In dynamical symmetry breaking, bound states of fermionic fields play the role of Higgs field; see the
various papers collected in Farhi and Jackiw (1982) for an overview of this research, which was pursued
actively throughout the 70s and early 80s.
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other contexts, including two very different approaches to early universe cosmology. The “Brus-

sels Consortium” (as I will call Robert Brout, François Englert, and their various collaborators)

described the origin of the universe as SSB of conformal symmetry, but this imaginative line of

research led to an increasingly rococo mess rather than a well constrained model. In addition,

Anthony Zee developed an account of gravitational symmetry breaking motivated by the desire

to formulate a gravitational theory with no dimensional constants other than the mass term of a

fundamental scalar field.

The members of the Brussels Consortium clearly share the desire to avoid the initial sin-

gularity we saw above, but like their countryman Lemaı̂tre decades earlier their main focus is

on a quantum description of the “creation” event itself. Brout et al. (1978) begin by declar-

ing their ambitious goal: replacing “the ‘big bang hypothesis of creation—more a confession

of desperation and bewilderment than the outcome of logical argumentation” with an account

of the “spontaneous creation of all matter and radiation in the universe. [...] The big bang is

replaced by the fireball, a rational object subject to theoretical analysis” (p. 78). As with Tryon

(1973)’s slightly earlier proposal, this account is compatible with conservation of energy (Brout

et al. 1978, put considerable emphasis on this point). Their theoretical analysis builds on a “deep

analogy” between relativistic cosmology and conformally invariant QFT, which in practice in-

volves two fundamental assumptions. First, the Consortium assumes that the universe must be

described by a conformally flat cosmological model.35 As a consequence, the metric for any

cosmological model is related to Minkowksi space by gµν = φ
2
(x

i
)ηµν . The conformal factor

35I call this an assumption since I cannot understand the argument in favor of it, which invokes
Birkhoff’s theorem along with the conformal flatness of the FLRW models (see Brout et al. 1978, pp.
78-79).
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φ(x
i
) is treated as a massless scalar field conformally coupled to gravitation. The second funda-

mental assumption of their approach is that the “creation” event corresponds to a fluctuation of

φ(x
i
). This fluctuation breaks the conformal symmetry of the initial state, which is taken to be a

constant φ(x
i
) in a background Minkowski space.

The devil is in providing the details regarding the universe this “rational fireball” pro-

duces. According to their account, the fluctuation initially produces a de Sitter-like bubble. Par-

ticles are produced by a “cooperative” process: initial variations in the gravitational field produce

massive scalar particles (via Parker’s mechanism of gravitational particle creation), the particles

create fluctuations in the gravitational field, the fluctuations seed further particle creation, and so

on. Eventually the cooperative process comes to an end, and the primeval particles decay into

matter and radiation as the universe slows from its de Sitter phase into free expansion. Although

the details of these processes are meant to follow from the fundamental assumptions, a number

of auxiliary conditions are introduced along the way in order to produce a universe something

like our own. The malleability of the physical model is nicely illustrated by the evolution of

the Consortium’s thought: Brout et al. (1980) abandon the earlier ideas and instead suggest that

particle production is a result of a “phase transition in which the ‘edge of the universe’ is the

boundary wall between two phases” (p. 110). The Consortium ultimately failed to provide a

concrete physical model (even when judged by the standards of contemporary particle physics!)

that realized their programmatic aims.

Despite the difficulties in filling out the creation story, the Consortium does clearly ex-

plain several features of an early de Sitter phase. It will come as no surprise that an early de Sitter

phase necessitates negative pressure, which Brout et al. (1978) explain as “the phenomenologi-

cal expression of ... the creation of particles” (p. 85). Of greater interest is a comment buried in
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an Appendix of Brout et al. (1978) (but mentioned more prominently in later papers—including

the title of Brout et al. (1979)) regarding the impact of an early de Sitter phase on horizons. As

with Sakharov’s proposal, there are no horizons. But there is also no pressing horizon problem

in Misner’s sense—conformal symmetry is stipulated at the outset, so there is simply no ques-

tion of explaining the early universe’s uniformity via causal interactions. However, the absence

of horizons is still mentioned as a way of solving the “causality problem”; in this model, the

universe and all its contents can ultimately be traced back to the initial pointlike fluctuation of

φ(x
i
).

Zee (1979, 1980) proposed that incorporating symmetry breaking into gravitational the-

ory (by coupling gravitation to a scalar field) leads to replacing the gravitation constant G with

(εφ
2

v
)
−1, where ε is a coupling constant and φv is the vacuum expectation value of the scalar

field.36 If the potential (and the minima) of this field varies with temperature, then the gravita-

tional “constant” varies as well. Zee (1980) argues that φ
2 ≈ T

2 at high temperatures, so that

G ∝ 1/T
2. This alters the Friedmann dynamics so that a(t) ∝ t, which is enough to make

the integral in eqn. (A.17) diverge—that is, the horizon distance goes to infinity as t → 0. Zee

clearly states the horizon problem and advertises this idea as a possible solution of it. Accord-

ing to Guth’s recollections (Guth 1997a, pp. 180-81), a lunchtime discussion of Zee’s paper in

the SLAC cafeteria led him to discover that his own inflationary model also solves the horizon

problem.

36Zee (1982) described the rationale for this approach in greater detail. The program (partially based on
Sakharov’s conception of “induced gravity”) aimed to formulate a renormalizable, conformally invariant
theory in which the gravitational constant is fixed by vacuum fluctuations of the quantum fields.
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3.2.3 Symmetry Restoration

In the condensed matter systems that originally inspired the concept of symmetry break-

ing, a variety of conditions (high temperature, large currents, etc.) led to restoration of the broken

symmetry. Many of the leading researchers in QFT focused on symmetry restoration in particle

physics in the early 70s (including Coleman, Weinberg, and Jackiw), perhaps due to the intricate

connections between symmetry breaking, renormalization, and unified theories similar to the

Weinberg-Salam model. From the outset, those studying symmetry restoration in gauge theories

expected restoration to occur in the extreme conditions in the hot early universe, and nearly ev-

ery paper on the subject includes speculations concerning the cosmological implications of these

new results.

A cautionary note is in order before turning to calculations of symmetry restoration.

The calculations discussed below all focus on the effective potential. Coleman (1985) warned

against taking this quantity too seriously due to its gauge dependence, but the results below are

all expressed in terms of properties of the effective potential rather than properly gauge invariant

quantities. I have to admit that I haven’t sorted out this murky issue. My conjecture is that there

is an implicit assumption that unitary gauge (used throughout the calculations below) reflects

the true physical degrees of freedom. This assumption comes into play in determining how

the external heat bath couples to gauge degrees of freedom in finite-temperature field theory.

Whether or not this conjecture holds historically or in terms of the physics involved, there is

clearly a need for some justification that the quantities used in these calculations are not shifty

gauge phantoms. However, I will leave the question aside for a later date.
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Two Russians with backgrounds in condensed matter physics, Kirzhnits and Linde, were

the first to study symmetry restoration in a model with global SSB (Kirzhnits 1972; Kirzhnits

and Linde 1972). Based on a heuristic analogy with superconductivity and superfluidity, they

estimate that the vacuum expectation value φ0 varies with temperature according to φ
2

0
(T ) =

φ
2

0
(T = 0)−cλT

2, where c and λ are non-zero constants. Symmetry restoration occurs above the

critical temperature TC , defined by φ
2

0
(TC) = 0 (for T > TC , φ0(T ) becomes imaginary). In the

Weinberg model φ0(0) ≈ G
1/2 (G is the weak interaction coupling constant), and (assuming that

cλ ≈ 1) Kirzhnits and Linde estimate that symmetry restoration occurs above TC ≈ G
−1/2 ≈

10
3
GeV . In the standard hot big bang model, this temperature corresponds to approximately

10
−12 seconds after the big bang. Kirzhnits and Linde (1972) further note that prior to symmetry

breaking the weak interaction would have been a long-range interaction like electromagnetism,

since it too would have been mediated by a massless gauge boson. This would lead to strong

repulsive forces between any two bodies with unbalanced weak charges. They refrain from a

more quantitative treatment of the cosmological implications of these ideas, citing the lack of a

final formulation of the electroweak theory.

Much more rigorous calculations carried out over the next few years (by Kirzhnits, Linde,

Weinberg, Dolan, Jackiw, Bernard and others) bolstered these initial rough results. These authors

utilized and further refined the effective action formalism (a.k.a. the effective potential method)

and applied it to finite-temperature field theory in order to calculate TC and determine the nature

of phase transitions in a variety of different field theories. The effective potential allows one

to carry out a fully quantum calculation (i.e., one taking the possibly divergent higher-order

corrections into account) along the same lines as the classical analysis sketched above. On the

assumption that the vacuum state is translationally invariant, symmetry breaking occurs if the
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following condition holds:

∂Veff (φcl)

∂φcl

= 0 where φcl = 〈0|φ(x)|0〉J(x) , (3.22)

where J(x) is an external source.37
Veff (φ) is typically evaluated in a loop expansion, a pertur-

bative expansion in terms of the number of closed loops appearing in the Feynman diagrams,38

and in the case of weak couplings the second- and higher-order loops are usually negligible. For-

tunately the ultraviolet divergences in this expansion can be cured with the same medicine used

for an SSB-free Lagrangian; rewriting the Lagrangian in terms of the true ground state hides the

original symmetry but does not change the ultraviolet-divergence structure of the theory.

These more rigorous calculations showed that symmetry restoration occurs as a conse-

quence of the temperature dependence of the higher-order corrections to the effective potential.

The full effective potential is the sum of a zero-temperature term and a temperature-dependent

contribution calculated using the methods of finite-temperature field theory. Finite-temperature

field theory includes interactions between the fields under consideration and a background ther-

mal heat bath at a temperature T (neglected in conventional QFT, which treats interactions be-

tween fields in otherwise empty space). Finite temperature field theory was first developed in

the 50s in order to study many-body systems in condensed matter physics. Remarkably, the dif-

ference between conventional QFT calculations and those in finite-temperature field theory lies

37The “classical field” φcl(x) is the vacuum expectation value in the presence of the source J(x). For
further discussion, see Coleman (1985, p. 132-142) or Peskin and Schroeder (1995, Chapter 11), which
both use functional methods similar to those introduced in Dolan and Jackiw (1974). Cheng and Li (1984,
§6.4) includes a detailed calculation of the effective potential up to one loop for φ

4 theory.
38This expansion is used rather than the usual coupling constant expansion since it is insensitive to

“shifting” the fields appearing in the Lagrangian to the true ground state (and the subsequent shuffling of
terms and coupling constants).
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merely in a change of the boundary conditions used in evaluating path integrals.39 In practical

terms, the field theorist can use the same familiar Feynman diagrams and calculational tools of

conventional QFT in finite temperature field theory, with the two-point function

Dβ(x − y) =
Tr(e

−βH
Tφ(x)φ(y))

Tre−βH
(3.23)

replacing the usual zero-temperature two-point function. Thus the calculation of the temperature-

dependent term (V̄eff ) proceeds like the calculation of the zero-temperature Veff , and V̄eff

generally includes a temperature-dependent mass correction, which changes the shape of the

effective potential. For example, the Lagrangian in eq. (3.5) exhibits symmetry breaking only

for a negative-mass term; for a positive-mass term, the global minimum of the potential lies at

φ = 0 and there is no symmetry breaking. If the following condition holds the negative-mass

term will be exactly cancelled by a mass correction in V̄eff :

∂V̄eff (φ, T )

∂φ2 |φ=0 = −m
2

2
. (3.24)

Above the critical temperature TC (at which the equation above holds), due to the positive-

mass correction in V̄eff the total effective potential has a global minimum at φ = 0 (see fig-

ure 3.1). Whether symmetry restoration occurs depends upon the nature of V̄eff in a particular

model; Weinberg (1974a) gives examples of models with no symmetry restoration and even low-

temperature symmetry restoration.40 Determining the nature of the symmetry breaking phase

39In particular, the Green’s functions for finite temperature are periodic in Euclidean time.
40Symmetry restoration can also be induced by large external fields or high current densities; see Linde

(1979) and references therein.
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Fig. 3.1 This figure illustrates the temperature dependence of the effective potential of the Higgs field in
the Weinberg-Salam model.

transition proved to more difficult than calculating the critical temperature. Weinberg (1974a)

noted that the phase transitions in the models he considered appeared to be second-order but that

he could not rule out weakly first-order phase transitions without a more detailed renormaliza-

tion group analysis. The critical temperature is roughly of the same order of magnitude for a

wide variety of models, but the nature of the phase transition depends more sensitively on the

form of the effective potential and the specific values of coupling constants in the fundamental

Lagrangian. The problem of determining the order of the phase transitions persisted throughout

the following decade, and I will consider this in more detail in the next section. Briefly, in a

second-order phase transition (such as the transition from paramagnetism to ferromagnetism),

the so-called order parameter (i.e., the parameter which differs for the two phases) changes

continuously at the critical temperature, whereas in a first-order phase transition (such as water

freezing) the order paramater changes discontinuously at the transition. In the case of symmetry

breaking, the order parameter is the vacuum expectation value of the Higgs field (rather than the
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entropy, as in the cases above). In terms of the form of Veff (φ, T ), a first-order phase transition

corresponds to φ evolving discontinuously through a barrier between the φ = 0 local minimum

and the true global minimum; if Veff (φ, T ) lacks a barrier the phase transition is second-order.

The flexibility of model-building at the GUT scale leads to a number of different possibilities for

the form of Veff (φ, T ), as we will see below.

3.3 Early Universe Phase Transitions

Explorers of the brave new early universe uncovered a number of possible consequences

of symmetry breaking phase transitions starting in the early 70s. These can be grouped into

roughly three different types of effects: (1) effects due to the different nature of the fundamental

forces prior to the phase transition, (2) defect or structure formation during the phase transi-

tion, (3) effects of the phase transition on the cosmological evolution equations. The numerous

researchers who contributed to this field reached widely divergent conclusions regarding these

effects, due at least in part to the model dependence of the phase transitions and the wide variety

of particle physics models under consideration.

The first works on phase transitions in cosmology (Kirzhnits 1972; Kirzhnits and Linde

1972) mention the possible consequences of long-range repulsive forces in the early universe.

For example, prior to the electroweak phase transition any “weak charge” imbalance would result

in long-range repulsive forces. Kirzhnits and Linde comment that “if a noncompensated charge

is present (either electric or weak), a closed Universe with positive curvature cannot exist. Under

the same conditions the isotropic and homogeneous Universe is also impossible” (Kirzhnits and

Linde 1972, p. 474). Although this passage is not entirely clear (possibly as a result of a

poor translation), I take Kirzhnits and Linde to be suggesting that long-range repulsive forces
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would preclude a closed or open FLRW model, the latter presumably due to non-uniformities.

Kirzhnits and Linde defer the detailed calculations meant to bolster this argument until a later

paper (which I have not been able to find). In any case, this brief argument is insufficient to

establish the general result. This conclusion holds only with a number of qualifications: the

small horizon size prior to the phase transition limits the overall impact of such forces, and

the action of these forces does not directly preclude particular models as Kirzhnits and Linde

claim. Suitable qualifications might rule out sets of well-chosen initial conditions that produce a

closed or open universe despite the presence of these forces. Whether this set is of small or zero

measure would need to be established by considering the details of models incorporating long-

range forces; as far as I know, neither Kirzhnits nor Linde pursued this line of thought. By way

of contrast, later researchers hoped that interactions at the GUT scale would help to smooth the

early universe. Ellis et al. (1980) consider the possibility that a “grand unified viscosity” would

effectively replace Misner’s neutrino viscosity and insure isotropization at very early times. They

conclude that although GUT interactions damp some modes of an initial perturbation spectrum,

they will not smooth a general anisotropic cosmological model.

The study of defect formation in the early universe was a much more fruitful line of re-

search. Unlike the shaky speculations regarding the implications of long-range forces, physicists

were able to explicitly calculate the consequences of a “domain structure” in the early universe

for specific models. Other calculations depended more directly on the details of the phase transi-

tion; in contrast, defect formation depends primarily on the topological structure of the vacuum

solutions to a particular field theory and is relatively insensitive to the finer details regarding the

phase transition. One of the earliest calculations of the consequences of domain structure focused
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on discrete symmetry breaking: Zel’dovich et al. (1975) assume that breakdown of CP invari-

ance in the early universe would result in regions with opposite signs for CP-noninvariant effects

separated by domain walls. They showed that the large energy density trapped in the domain

walls would produce inhomogeneities far too large to fit observational constraints. Moreover

they calculate the equation of state for this “cellular medium” (averaged over a volume con-

taining both domain walls and the empty cells), and demonstrate that evolution dominated by

matter in this state solves Misner’s horizon problem. Zel’dovich et al. (1975) clearly recognize

the implications of this result:41

Owing to the peculiar expansion law during the initial (domain) stage it is quite
possible that Xc >> Xp [Xc is the causal horizon, Xp is the particle horizon].
... But it is just such a situation which Misner considered necessary, and for its
sake he considered preferable an anisotropic closed model of the universe. The
condition Xc >> Xp denotes the possibility in principle that the conditions in the
accessible part of the Universe are evening out. In the domain theory this condition
is compatible with a flat or with an open or homogeneous and isotropic Friedmann
cosmological solution!

Like Sakharov’s discussion of the horizon problem, this apparently escaped notice—the authors’

main interest was to establish the incompatibility of this model with observations, and they do

not mention the horizon problem in the abstract, introduction, or conclusion.42 In addition, the

paper focused on discrete rather than continuous SSB, whereas the Weinberg-Salam theory and

various unification schemes incorporated the latter.

Kibble and a number of other researchers focused on several different types of “topologi-

cal defects” that may form during phase transitions in the more interesting case of gauge theories

with SSB. These defects result from the domain structure of the Higgs field following a phase

41The averaged equation of state for the domain stage is p = − 2
3ρ, leading to a(t) ∝ t

2 during the
“cellular medium”-dominated stage of evolution.

42Contemporary review articles, such as Linde (1979), also do not mention the horizon problem in
connection with this paper.



109

transition and further depend on the topology of the space of non-singular finite energy solu-

tions to the field equations. The Higgs field develops a complicated domain structure because

the symmetry is broken differently in distant regions.43 The particle horizon at the time of the

phase transition sets an upper limit on the correlation length of the Higgs field (which generally

depends upon the details of the transition, and may be shorter than the horizon distance).44 In

most cases this complicated domain structure will disappear as the Higgs fields in different re-

gions become “aligned,” but for some particular models no continuous evolution of the field can

eliminate all of the nonuniformities; topological defects are the resulting persistent structures.

Later work on the formation of defects in theories with SSB of local gauge symmetries

also ran afoul of observational constraints. Thomas Kibble, an Indian-born British physicist at

Imperial College, established a particularly important result (Kibble 1976): defect formation

depends on the topological structure of the vacuum solutions to a particular field theory, and is

thus relatively independent of the details of the phase transition. Roughly, defects result from

the initial domain structure of the Higgs field, which Kibble argued should be uncorrelated at

distances larger than the particle horizon at the time of the phase transition. This complicated

domain structure disappears if the Higgs field in different regions becomes “aligned,” but in

some cases no continuous evolution of the field can eliminate all nonuniformities; topological

defects are the resulting persistent structures. Kibble (1976) noted that point-like defects (called

monopoles and previously studied by ’t Hooft 1974; Polyakov 1974) might form, but thought that

43In the case considered above, the form of the Lagrangian determines the magnitude of 〈φ〉 but not the
direction in field space in which symmetry breaking occurs; in the absence of some correlation between
two regions, one would expect the direction of symmetry breaking to differ.

44Kibble (1976) first argued that the correlation length of the Higgs field should be less than the horizon
scale initially (based on the Landau-Ginzburg theory of phase transitions). He later stated this point as
follows: “...there can surely be no correlation extending beyond the current “horizon,” at a distance ct.
More remote parts of the universe can have no prior causal contact, at any rate in the conventional picture”
(Kibble 1980, p. 189). Wald criticizes the assumption that the field is uncorrelated, see Wald (1992).
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they would “not be significant on a cosmic scale.” However, given the absence of any natural

annihilation mechanism, Zel’dovich and Khlopov (1978), Preskill (1979), and Einhorn et al.

(1980) established a dramatic conflict between predicted monopole abundance and observations:

in Preskill’s calculation, monopoles alone would contribute a mass density 10
14 times greater

than the total estimated mass density!45 The story was the same for other types of defects:

Zel’dovich et al. (1975) and Kibble (1976) both showed that domain walls are incompatible with

the observed homogeneity of the CMBR.

The resolution of this dramatic conflict would ultimately come from considerations of

the third type of effect. Linde, Veltman and Joseph Dreitlein at the University of Colorado

independently realized that a non-zero V (φ) would couple to gravity as an effective Λ term. The

stress energy tensor for a scalar field is given by

Tab = ∇aφ∇bφ − 1

2
gabg

cd∇c∇dφ − gabV (φ); (3.25)

if the derivative terms are negligible, Tab ≈ −V (φ)gab. Linde (1974) argued that although earlier

particle physics theories “yielded no information” on the value of Λ (following Zel’dovich, he

held that Λ is fixed only up to an arbitrary constant), theories incorporating SSB predicted a

tremendous shift – 49 orders of magnitude – in V (φ) at the critical temperature Tc.46 However,

45Zel’dovich and Khlopov (1978) calculated the abundance of the lighter monopoles produced in elec-
troweak symmetry breaking, with mass on the order of 10

4
GeV , whereas Preskill (1979) calculated the

abundance of monopoles (with mass on the order of 10
16

GeV ) produced during GUT-scale symmetry
breaking.

46Linde estimated that before SSB the vacuum energy density should be 10
21

g/cm
3, compared to a

cosmological upper bound on the total mass density of 10
−28

g/cm
3. In an interview with the author,

Linde noted that the title of this paper was mistranslated in the English edition, as “Is the Lee Constant a
Cosmological Constant?”; the correct title is “Is the Cosmological Constant a Constant?”
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this dramatic change in the cosmological “constant” would apparently have little impact on the

evolution of the universe (Linde 1974, 183):47

To be sure, almost the entire change [of Λ] occurs near Tc = 10
15 − 10

16 deg. In
this region, the vacuum energy density is lower than the energy density of matter and
radiation, and therefore the temperature dependence of Λ does not exert a decisive
influence on the initial stage of the evolution of the universe.

Linde implicitly assumed that the phase transition was second-order, characterized by a transition

directly from one state to another with no intermediate stage of “mixed” phases.48 Unlike Linde,

Veltman (1974) regarded the idea that an arbitrary constant could be added to the vacuum energy

density to yield a current value of Λ ≈ 0 as “ad hoc” and “not very satisfactory.” Veltman

took the “violent” disagreement with observational constraints on Λ and the value calculated

using the electroweak theory as one more indicator that the Higgs mechanism is “a cumbersome

and not very appealing burden” (Veltman 1974, p. 1).49 Dreitlein (1974) explored one escape

route: an incredibly small Higgs mass, on the order of 2.4 × 10
−27

MeV , would lead to an

effective Λ close enough to 0. Veltman (1975) countered that such a light Higgs particle would

mediate long-range interactions that should have already been detected. In sum, these results

were thoroughly discouraging: Veltman had highlighted a discrepancy between calculations of

the vacuum energy in field theory and cosmological constraints that would come to be called the

47The radiation density ρrad ∝ T
4, which dominates over the vacuum energy density for T > Tc;

Bludman and Ruderman (1977); Kolb and Wolfram (1980) bolstered Linde’s conclusion with more de-
tailed arguments.

48This assumption was not unwarranted: Weinberg (1974a) concluded that the electroweak phase tran-
sition appeared to be second order since the free energy and other thermodynamic variables were contin-
uous (a defining characteristic of a second-order transition).

49Veltman desribed the idea of “cancellation” of a large vacuum energy density as follows: “If we as-
sume that, before symmetry breaking, space-time is approximately euclidean then after symmetry break-
ing ... a curvature of finite but outrageous proportions result [sic]. The reason that no logical difficulty
arises is that one can assume that space-time was outrageously “counter curved” before symmetry break-
ing occurred. And by accident both effects compensate so precisely as to give the very euclidean universe
as observed in nature.”



112

“cosmological constant problem” (see Rugh and Zinkernagel 2001). Even for those willing to

set aside this issue and focus only on the shift in vacuum energy, there appeared to be “no way

cosmologically to discriminate among theories in which the symmetry is spontaneously broken,

dynamically broken, or formally identical and unbroken” (to quote Bludman and Ruderman

1977, 255).

By the end of the 70s several physicists had discovered that this conclusion does not hold

if the Higgs field became trapped in a “false vacuum” state (with V (φ) 6= 0). Demosthenes

Kazanas, an astrophysicist working at Goddard Space Flight Center, developed a more general

model of the phase transition in which the vacuum energy does not vanish immediately; instead,

it drops with temperature such that ρvac ≈ ρ0(
T
Tc

)
β where β is a small number to be derived

from particle physics (Kazanas sets β = 2 in his calculations). This decaying vacuum energy

alters the standard FLRW dynamics; Kazanas shows that rather than the standard a(t) ∝ t
1/2 for

a radiation-dominated solution,

a(t) ≈ a0(t/τ)
1/3

exp
3/4(t/τ)2/3

, (3.26)

where τ = (8πρ0/3)
−1/2 is the characteristic time scale of the expansion. Kazanas clearly

recognizes the implications of this vacuum-driven expansion (Kazanas 1980, p. L62.):

Such an exponential expansion law occurring in the very early universe can actually
allow the size of the causally connected regions to be many orders of magnitude
larger than the presently observed part of the universe, thus potentially accounting
for its observed isotropy.

In his concluding remarks Kazanas also notes the often implicit assumption of previous work

that the phase transition is of second-order. If the transition is first-order, the Higgs field will
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remain trapped in a false vacuum state for some time—and the huge vacuum energy density will

dominate the dynamics.

When discussed at all, this assumption was motivated by a widely recognized problem

with first-order transitions: the formation of large scale inhomogeneities (due to bubbles of

the new phase forming within the old phase) would conflict with the observed isotropy of the

CMBR. Sato (1981) considers a first-order transition in some detail, and derives constraints on

various parameters (such as the nucleation rate for the bubbles) which must be met in order to

produce a homogeneous universe.50 Although Sato (1981) appears optimistic that a first-order

transition can produce a homogeneous universe, he does not comment on whether the stringent

constraints he derives are satisfied by any particle physics models of the phase transition. Linde

also mentioned the difficulties associated with bubble formation as a justification for focusing

on second-order transitions. He only considered first-order transitions in any detail in an unpub-

lished paper with Chibisov on the “cold universe” model; in this model, symmetry breaking is

induced by the increase in fermion density even though the temperature never reaches the critical

temperature.51

Guth and Tye (1980) argued that a first-order phase transition had an appealing conse-

quence alongside the unappealing formation of bubbles: such a transition could alleviate the

monopole problem, since within each bubble produced in a first-order transition, the Higgs field

is uniform. Monopoles would only be produced at the boundaries between the bubbles as a con-

squence of bubble wall collisions. Thus the abundance of monopoles ultimately depends upon

50Sato’s overall interest was in the possibility of a baryon-symmetric early universe, and he hoped that
an early phase transition would effectively separate regions of matter and anti-matter.

51See Linde (1979, p. 433-34); in a 1987 interview he commented that “we understood that the uni-
verse could exponentially expand, and bubbles would collide, and we saw that it would lead to great
inhomogeneities in the universe. As a result, we thought these ideas were bad so there was no reason to
publish such garbage” (Lightman and Brawer 1990, p. 485-86).
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the nucleation rate of the bubbles. Guth and Tye (1980) argue that reasonable models of the

phase transition have a low nucleation rate, leading to a tolerably low production of monopoles.52

Shortly after submitting this paper, Guth independently discovered that the equation of state for

the Higgs field trapped in a “false vacuum” state drives exponential expansion. In short order, he

discovered several other appealing features of an extended phase of expansion discussed above.

The next chapter begins with an assessment of Guth’s seminal paper, which gave a persuasive

presentation of the advantages of an extended “inflationary” phase.

3.4 Conclusions

The consolidation of the suprisingly successful Standard Model of cosmology by the

early 70s encouraged forays into early universe cosmology along a number of different theoret-

ical trails. As with other cases of extending a successful theory, advocates of speculative new

lines of research marshall whatever arguments they can to decide which trails lead to promising

new insights and which should be abandoned, and to persuade their colleagues to share their

assessments. In closing I would like to emphasize two points regarding the arguments made in

favor of the new ideas discussed in this chapter.

First, many of the proposals above promised to solve problems “internal” to cosmology,

although there was not complete agreement regarding the legitimacy of various problems. The

previous chapter described various fine-tuning problems that motivated Misner’s program, but

these problems were not broadly recognized or even regarded as legitimate problems by all the

researchers discussed above. Sakharov and Zel’dovich both duly note their solutions of the

52Guth and Tye (1980) do not suggest any mechanism for eliminating the resulting inhomogeneity
following such a transition.
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horizon problem, but neither places much emphasis on this consequence (it doesn’t even find its

way into the abstract or conclusion of Zel’dovich et al. 1975). Starobinsky explicitly contrasted

his approach to Misner’s chaotic cosmology: he proved that the de Sitter solution is a solution of

the EFE modified to incorporate quantum effects, but in the absence of a uniqueness result simply

stipulated that the early universe must have begun in this highly specialized state. Clearly among

the Soviet cosmologists avoiding the initial singularity was a greater virtue for a cosmological

model. On the other hand, several cosmologists (mainly described in the previous chapter) did

see fine-tuning problems as important guides in developing new theories.

Second, the interest in symmetry breaking phase transitions arose from advances in par-

ticle physics that had nothing to do with cosmology per se. As I argued above, the introduction

of symmetry breaking was one of the profound conceptual innovations leading to the Glashow-

Weinberg electroweak theory. However, the Higgs mechanism proved to be nearly beyond the

reach of the standard techniques of experimental high energy physics. But as Kirzhnits and

Linde (1972) emphasized, the Higgs mechanism does have striking consequences for cosmol-

ogy on the assumption that it describes a real phase transition occurring in the early universe.

The application of the Weinberg-Salam theory and GUTs led to a second distinct group of prob-

lems in early universe cosmology: was this amalgam of the two Standard Models internally

consistent and compatible with observations? Unlike the application of nuclear physics to cos-

mology in the development of the big bang theory, this is not a case of applying well understood

physics with few doubts regarding its validity; instead, cosmological considerations were used

as a substitute for accelerator experiments in validating the novel ideas incorporated in GUTs.

Faced with stark conflicts between observation and the consequences of early universe phase

transitions, some particle physicists such as Veltman were willing to entirely abandon the Higgs
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mechanism. However, as we will see in the next chapter, the study of first-order phase transi-

tions showed that particle physicists could have their Higgs mechanism and solve cosmological

problems too.
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Chapter 4

An Inflationary Field

4.1 Old and New Inflation

Various paths led to the idea that the early universe passed through a first-order phase

transition. Guth and Tye (1980); Einhorn and Sato (1981) both argued that a first-order tran-

sition could ease the conflict between the abundance of monopoles calculated in the simplest

GUTs and strong observational limits that were several orders of magnitude lower. But another

novel consequence of a first-order transition, namely that an extended false vacuum phase would

lead to a period of exponential expansion, initially received mixed reviews. From the very out-

set, Guth labeled his recognition of the connection between such an “inflationary” stage and the

flatness problem a “spectacular realization.” His seminal paper (Guth 1981) presented a clear

rationale for further study of phase transitions producing an inflationary stage, and it had an

immediate and lasting impact on research in the field. In light of Guth’s paper and subsequent

developments, it is easy to overlook contemporary work that emphasized the negative conse-

quences of first-order phase transitions.

First-order phase transitions have the undesirable consequence of producing large inho-

mogeneities, due to the formation of “bubbles” of the new phase immersed in the old phase. As

we saw above, this problem deterred Linde from considering first-order phase transitions, and

Sato (1981) derived a number of stringent constraints a GUT would need to satify to avoid exces-

sive inhomogeneities. Even Guth’s contemporaries who recognized that a first-order transition
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would produce a stage of exponential expansion regarded the idea with some skepticism. Ein-

horn and Sato (1981) focused on the difficulties that arise if the phase transition ends with bubble

nucleation by quantum tunneling.1 In particular, they argue that “fast nucleation” (a rapid phase

transition without exponential expansion) is inconsistent with the observed baryon-to-entropy

ratio, whereas “slow nucleation” (a slow transition with an extended period of exponential ex-

pansion) does not lead to full completion of the phase transition. Their paper concludes on the

following cautionary note:

We have seen that most of the difficulties with the long, drawn-out phase transition
discussed in Section V stems [sic] from the exponential expansion of the universe.
This was due to the large cosmological constant. If a theory could be developed in
which the vacuum did not gravitate, i.e., a theory of gravity which accounts for the
vanishing cosmological constant term in a natural way, then the discussion would
be drastically changed. Although scenarios have been developed in which the effect
of the cosmological constant term remains small for all times,2 we would speculate
that the problem here is less the choice of GUT but rather reconciling gravity with
quantum field theory.

Two choices have led to an apparent dead end: including the false vacuum energy as an effective

cosmological constant, and describing the symmetry-breaking phase transition as a first-order

transition (with a range of parameter choices based on particular GUTs). Einhorn and Sato

suggest that the problem lies with the first choice and not the second. But by the time their paper

appeared in print, Guth (1981) had given a persuasive argument that an inflationary stage is a

desirable consequence of an early universe phase transition, rather than something to be avoided.

1The original draft of this paper was completed in July 1980, and revised in November of 1980,
partially in response to comments from Guth and his collaborator, Erick Weinberg. Einhorn and Guth met
and discussed phase transitions in November of 1979, but judging from Guth’s comments in Guth (1997a,
p. 180), Einhorn and Sato hit upon the idea of false-vacuum driven exponential expansion independently.

2Here Einhorn and Sato cite Mohapatra and Senjanovic (1979a,b); Mohapatra (1980), which discuss
gauge theories in which CP symmetry remains broken at high temperatures. Mohapatra (1980) empha-
sizes that in such theories the cosmological constant can be made arbitrarily small throughout the history
of the universe.
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Guth (1981) presents an inflationary stage as the decisive solution to two problems facing

cosmology, and only secondarily as a solution to the monopole problem.3 Following his work

with Tye on the monopole problem, on the evening of Dec. 6, 1979 Guth calculated the impact

of a first-order phase transition on the evolution of the universe. His work notebook from the

next day (on display at the Adler Planetarium in Chicago) begins with the following statement

highlighted in a double box: “SPECTACULAR REALIZATION: This kind of supercooling

can explain why the universe today is so incredibly flat—and therefore resolve the fine-tuning

paradox pointed out by Bob Dicke.” 4 Guth’s calculations showed that the false vacuum energy

present (with energy density ρ0) during a first-order phase transition, assuming it couples as

an effective cosmological constant, drives exponential expansion a(t) ∝ e
χt where (χ)

2
=

(8π/3)ρ0 . An extended period of exponential expansion enormously suppresses the curvature

term in the Friedmann equation (see Appendix A.2). If the universe expands by a factor Z ≥

10
29, where Z =: e

χ∆t and ∆t is the duration of the inflationary stage, then Ω0 = 1 to extremely

high precision, for nearly any pre-inflationary “initial value” of Ω. Guth (1981) contrasts this

situation with the standard big bang theory: since Ω = 1 is unstable under dynamical evolution

governed by the Freidmann equation, sans inflation the initial value of Ω at the Planck time, for

example, must be fine tuned to an accuracy of one part in 10
59.5

3The monopole problem is mentioned in the penultimate line of the abstract, whereas the title, abstract,
introduction, and conclusion all emphasize the inflationary solution to the horizon and flatness problems.

4See Guth (1997a), Chapter 10 for a detailed account (quotation on p. 179). Guth attended a lecture
by Dicke, in which he mentioned the flatness problem, on Nov. 13, 1978.

5Taking t → 0 the value of Ω must be finely tuned to arbitrary accuracy. On the other hand, as Guth
(1981) points out, this impressive degree of fine tuning does not depend strongly on when the initial
conditions are taken to be fixed; at a more modest energy of 10

14
GeV (compared to 10

19
GeV for the

Planck scale), Ω must still be fine tuned to one part in 10
49.
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Guth was one of the first to clearly recognize that an inflationary stage solves the flatness

problem in this sense.6 By way of contrast, inflation’s implications for horizons, understood by

a number of Guth’s contemporaries, appear to have come to him as a pleasant surprise that en-

hanced his confidence in the idea. Guth (1997a, pp. 180-81) recounts that a lunchtime discussion

of Zee’s work in the SLAC cafeteria led him to calculate the effects of inflation on horizon struc-

ture. He found that inflation increases the horizon distance by a factor of Z; for Z > 5 × 10
27

the “horizon problem disappears” in the sense that the horizon length at the time of the emission

of the CMBR surpasses the current visual horizon. (As Guth notes, horizons do not disappear;

they are only pushed beyond the observed part of the universe. See Appendix A.3 for further dis-

cussion of the horizon problem and the impact of inflation.) Guth (1981) again emphasizes the

striking difference between this feature of the inflationary universe and the standard cosmology

(p. 347): for the standard cosmology, “the initial universe is assumed to be homogeneous, yet it

consists of at least ≈ 10
83 separate regions which are causally disconnected.” For an inflationary

period with sufficiently large Z , a single pre-inflationary patch of sub-horizon scale expands to

encompass the observed universe.

In the previous chapter I argued that earlier, similar proposals faced two general diffi-

culties: identifying the source of the false vacuum state, and giving an account of the transition

from a de Sitter-like stage to FLRW evolution. The vacuum energy of a Higgs field trapped in

a false vacuum state is the source in Guth’s model.7 Guth’s only comment regarding whether

current GUTs incorporate a Higgs potential with the appropriate properties is quite cautious (p.

6Linde (1979) cites a preprint by Rubakov (dated 1979) that apparently includes a discussion of the
flatness problem and a solution of it via a stage of exponential expansion (cf. Linde 2002). This paper
was never published, and I have not obtained a copy of the preprint.

7Guth (1981) uses a bare minimum of field theory, introducing only the energy density as a function
of temperature for a false vacuum state, leaving a more detailed account of first-order transitions in the
context of an SU(5) GUT for Guth and Weinberg (1981).
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352): “[G]rand unified models tend to provide phase transitions which could lead to an inflation-

ary scenario of the universe.” He is also admirably frank regarding his failure to account for the

transition to FLRW expansion, later dubbed the “graceful exit” problem. This failure stems from

the fact that bubbles of new phase formed during the phase transition do not percolate, i.e., they

do not join together to form large regions of the same phase. The energy released in the course of

the phase transition is concentrated in the bubble walls, leading to an energy density far too high

near the bubble walls and far too low in the interior. Frequent bubble collisions would be needed

to smooth out the distribution of energy so that it is compatible with the smooth beginning of an

FLRW model. Guth and Weinberg (1983) later showed that for a wide range of parameters the

bubbles do not percolate, and they also do not collide quickly enough to thermalize. The phase

transition never ends, in the sense that large volumes of space remain “stuck” in the old phase,

with vast differences in the energy density between these regions and the bubble walls.8 In

summary, a first-order phase transition appropriate for inflation also produces a universe marred

by the massive inhomogeneities due to the formation of bubbles, rather than the smooth early

universe required by observations.

Like earlier work, Guth’s proposal failed to solve the graceful exit problem. But rather

than abandon the idea, Guth argued that the explanatory advantages of inflation were reason

enough to pursue the idea further. Guth’s rationale for inflation has a familiar form: an innovative

new idea is to be pursued further since it eliminates a number of unexplained coincidences

required by existing theory, and in that sense offers a better explanation of observed regularities.

The case of Copernican astronomy supplies a shopworn example of this type of argument, which

8See Guth and Weinberg (1983); Blau and Guth (1987) for clear descriptions of the graceful exit
problem, and the calculations leading to the conclusion that this is a death blow to the initial model.
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Janssen (2002) dubs a “Common Origin Inference” (COI).9 In Ptolemaic astronomy, the model

for motion of each planet is closely tied to the motion of the sun, although there is no reason for

this connection other than fidelity with observations.10 In Copernican astronomy, the correlated

components are due to the Earth’s motion around the sun. The Ptolemaic system incorporates

the correlation by appropriately tuning the parameters of the planetary models; the Copernican

theory is to be preferred because it traces these parameters to their “common origin,” namely the

simple geometry of Copernicus’s heliostatic system. This style of argument figures prominently

in reconstructions of other debates regarding the introduction of a new theory (see Janssen 2002,

for three other case studies).

Guth’s argument took a similar form: he emphasized that an inflationary stage eliminates

several fine-tuning problems of standard cosmology. The standard cosmology requires that at

the Planck time the 10
83 causally disjoint patches constituting the observable universe began in

a state of pre-established harmony that would shock even Leibniz: they must have been at the

same temperature, with a delicately tuned overall energy density. Guth showed that taking GUT-

scale phase transitions into account might eliminate the need for such unexplained coincidences.

Another fine-tuning problem was added to the list in 1982, as we will see below: inflation pro-

vides a mechanism for generating the slight departures from homogeneity needed to seed galaxy

formation. The study of GUT-scale phase transitions was still in the full bloom of youth, and

Guth stressed the plausible hope that a more mature model would avoid the problems plaguing

his initial idea. (Guth (1981) already mentions the possibility, studied by Edward Witten, that

9Here I will leave aside my doubts regarding whether this reconstruction of the case for Copernican
astronomy can be defended as an accurate historical account.

10The center of the epicycle lies along the same line of sight as the mean sun for the interior planets.
For the superior planets, the line from the center of the epicycle to the planet is parallel to the line of sight
of the mean sun.
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symmetry breaking of a Higgs field obeying the Coleman-Weinberg condition might yield an

acceptable inflationary model.)

From the outset Guth’s proposal was greeted as a major development. Sidney Coleman

called Guth’s first presentation on inflation the best seminar of the year at SLAC, where Guth was

a postdoc (as Guth warmly recalls in Guth 1997a, p. 187). Word spread quickly enough that job

offers began materializing within five days, and a month later (February 1980) Guth was on the

lecture circuit introducing his ideas to a large cross-section of the particle physics community.

By the following summer Guth was on his way to a faculty position at his alma mater, MIT. In

addition to this quick upturn in his career path, Guth’s talks and his paper (submitted in August

of 1980) had two fairly immediate impacts. Guth introduced many astrophysicists and particle

physicists to the very idea of early universe cosmology. Even those who had been aware of earlier

work, such as Martin Rees, have commented that they only understood earlier results in light of

Guth’s paper.11 By admitting the flaws of his initial model, Guth also left his audiences with

a clearly formulated task: to find a working model of inflation. Paul Steinhardt, then a Junior

Fellow in the Harvard Society of Fellows, describes Guth’s talk at Harvard as “the most exciting

and depressing talk” he had ever attended (Steinhardt 2002). The excitement stemmed from the

promise of connecting the study of phase transitions to fundamental questions in cosmology. But

after laying out inflation’s ability to solve the trio of problems mentioned above, Guth ended by

explaining the fatal flaw of his initial model. Steinhardt recalls his reaction: “Here was this great

idea and it just died right there on the table. So I couldn’t let that happen.”

11Rees attended talks about the early universe by both Starobinsky and Englert before 1981, but by his
own account he did not see the appeal of these ideas until he had read Guth’s paper (see Lightman and
Brawer 1990, p. 161 and Rees 2002).
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Given Steinhardt’s background in condensed matter physics and familiarity with phase

transitions, he was ideally suited to take on the task of reviving Guth’s idea. News of Guth’s

paper also reached Andrei Linde in Moscow, and inspired him to reconsider the models he had

previously dismissed as “garbage”. Steinhardt began studying early universe phase transitions

almost immediately, and upon taking a faculty position at the University of Pennsylvania he

found a graduate student, Andy Albrecht, eager to join in the project. Linde and Steinhardt

and Albrecht independently realized that a symmetry breaking phase transition governed by a

different effective potential could avoid Guth’s graceful exit problem while providing sufficient

inflation.

At roughly the same time, Hawking and Ian Moss proposed an alternative solution to

the graceful exit problem. Although Hawking and Moss (1982) is sometimes cited as a third

independent discovery of new inflation, it differs substantially from the other proposals.12 The

aim of the paper is to show that including the effects of curvature and finite horizon size leads

to a different description of the phase transition. This phase transition proceeds from a local

minimum at φ = 0 to the global mimimum φ0 via an intermediate state φ1; rather cryptic

arguments lead to the conclusion that “the universe will continue in the essentially stationary

de Sitter state until it makes a quantum transition everywhere to the φ = φ1 solution” (p. 36).

They further argue that following this transition to a coherent Hubble scale patch, φ will “roll

12According to Steinhardt, Hawking demanded that Turner and Barrow mention his own paper along
with Linde (1982); Albrecht and Steinhardt (1982) as the sources of new inflation in their review of the
Nuffield conference. Hawking later alleged (in the first printing of Hawking 1988) that the discovery was
not independent: Steinhardt could have been introduced to Linde’s ideas in a lecture Hawking had given,
and Steinhardt had attended, at Drexel University. (Hawking and Moss cite conversations with Linde as
the stimulus for their own research.) Steinhardt found a videotape of the Drexel lecture, and proved that
Hawking’s memory was faulty: he made no mention of Linde or new inflation. Hawking made an apology
of sorts and edited the offending passage, but Steinhardt regards Hawking’s handling of the affair to have
been “dishonorable” (Steinhardt 2002).



125

down the hill” (for an appropriate values of parameters in the effective potential), producing an

inflationary stage long enough to match Guth’s success.

Unlike Hawking and Moss’s paper, Albrecht and Steinhardt (1982) and Linde (1982)

both developed models of the phase transition based on a Coleman-Weinberg effective potential

for the Higgs field. (Ironically Erick Weinberg, Guth’s collaborator in calculating the disastrous

effects of bubble formation in the original scenario, did not recognize the utility of the potential

bearing his name.) The difference can be illustrated with the following general form for the

effective potential, including one-loop corrections:13

V (φ) = −1
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(2B + A)σ

2
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2
+

1

4
Aφ

4
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4
ln

(

φ
2

σ2

)

, (4.1)

where σ = 〈φ〉. Unlike the potential Guth used, for a Coleman-Weinberg model the quartic term

at “tree level” vanishes, i.e. 2B + A = 0.14 Coleman and Weinberg (1973)’s surprising insight

was that higher order corrections could nevertheless induce symmetry breaking, without invok-

ing temperature-dependent terms. For example, if B > 0 this effective potential has extrema at

φ = 0 and φ = ±σ; for appropriate values of A,B, and σ, φ = 0 is only a local minimum with

the global minimum given by φ = ±σ. The difference between the effective potentials for old

and new inflation is illustrated in Figures 4.1 and 4.2. Although this may appear to be a slight ad-

justment of the effective potential, it leads to a dramatically different phase transition. The most

important consequence is that inflation continues after the formation of an initial bubble: rather

13
A is a free parameter, whereas B is a constant depending on the coupling constants of the specific

GUT used, and the vacuum expectation value σ also depends on the coupling constants and the masses of
the gauge bosons. See, e.g., Kolb and Turner (1990), Chapter 7, for detailed discussions of the effective
potential in particular models. Here I am neglecting temperature-dependent terms.

14The third term is the one-loop correction to the tree level (or classical) expression.
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than tunnelling directly to the global minimum, in this scenario the field φ evolves to the min-

imum over a “long” timescale τ (i.e., much longer than the expansion time scale). Throughout

this evolution φ is still displaced from the global minimum, and the non-zero V (φ) continues to

drive exponential expansion. Linde (1982); Albrecht and Steinhardt (1982) both argue that for

natural values of τ the expansion lasts long enough that the initial bubble is much, much larger

than the observed universe; Linde estimates that the bubble radius will be ≈ 10
3240

cm at the end

of the inflationary stage, compared to 10
28

cm for the visual horizon (see Appendix A.3 for the

definition of visual horizon). Finally, as in Guth’s scenario any pre-inflationary matter and en-

ergy density are diluted during the extended inflationary stage. In the new secnario, oscillations

of the field φ near its global minimum would produce other particles via baryon-number non-

conserving decay in order to “reheat” the universe to an energy density compatible with standard

cosmology.

The initial proposals were quickly developed into a general account of new inflation. The

features of the phase transition can be described simply in terms of the evolution of φ, which

is determined by the form of the potential V (φ). The classical equations of motion for a scalar

field φ with a potential V (φ) in an FLRW model are given by:

φ̈ + 3Hφ̇ + Γφφ̇ +
dV (φ)

dφ
= 0, (4.2)

where φ̇ = dφ
dt and Γφ is the decay width of φ.15 New inflation requires a long “slow roll”

followed by reheating. Assume that the field φ is initially close to φ = 0. Slow roll occurs if the

potential is suitably flat near φ = 0 and the φ̈ term is negligible; given the further assumption

15One of the main differences between the initial papers on new inflation is that Albrecht and Steinhardt
(1982) explicitly include the 3Hφ̇ term (aka the “Hubble drag” term), whereas Linde (1982) does not.
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that the Γφ term is negligible, then the evolution of φ can be approximately described by:

3Hφ̇ ≈ −dV (φ)

dφ
. (4.3)

(The name is due to the similarity between the evolution of φ and that of a ball rolling down

a hill, slowed by friction.) More precisely, the following two conditions on the potential are

necessary conditions for the slow roll approximation to apply:16
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These conditions are not sufficient, however, since the value of φ̇ must also be small initially

for the approximation to hold. During slow roll the potential energy V (φ) dominates over the

kinetic energy φ̇
2 (as a consequence of these conditions), and V (φ) drives inflationary expansion.

The slow roll approximation breaks down as the field approaches the global minimum. The Γφ

term is put in “by hand” to describe reheating: roughly, φ oscillates around the minimum and

decays into other types of particles. The details depend on the coupling of φ to other fields, and

are heavily model-dependent.

By the spring of 1982 several groups were at work fleshing out the details of the new

inflationary scenario: a large group at the University of Chicago and Fermilab including Turner

and Kolb, Steinhardt and Albrect at the University of Pennsylvania, Guth at MIT, Linde and var-

ious collaborators in Moscow, Laurence Abbott at Brandeis, Hawking and others in Cambridge,

16Here I have introduced the reduced Planck mass, defined by Mpl = (8πG)
−1/2.
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and John Barrow in Sussex. With notable exceptions such as Hawking and Barrow, nearly ev-

eryone in this research community came from a background in particle physics. The framework

described in the previous paragraph left ample room for innovation and new ideas: the connec-

tions with particle physics were poorly understood at best, the various approximations used were

generally on shaky footing, and there were numerous hints of interesting new physics. Several

of these researchers recognized the most important hint: homogeneity at all scales at the end

of inflation would be incompatible with accounts of galaxy formation, which required an initial

spectrum of perturbations. There appeared to be several ways to avoid too much homogeneity at

the end of inflation; Linde (1982), for example, mentions a later phase transition without super-

cooling or quantum gravity effects as a possible means for generating inhomogeneities. In the

next section we will see how these guesses were developed into inflationary cosmology’s most

fruitful connection with observations.

Guth’s paper initiated a striking shift in the focus of research in early universe cosmol-

ogy. The previous chapter described an exploratory phase of research: although it was clear that

particle physics theories would lead to novel consequences when applied to the early universe,

there were few signposts to guide theory development. Without clear observational anomalies,

and great freedom in both particle theory and cosmology, efforts largely focused on determin-

ing the consequences—any consequences, even stark conflicts like the monopole problem—of

plausible models of high energy physics. Guth’s paper provided an agenda: rather than trying to

determine the generic consequences for a broad range of particle physics models, nearly every-

one in the field joined in the hunt for a workable model of inflation. The trio of problems Guth

discussed become an entrance requirement: to be taken seriously, any new proposal had to solve

the flatness, horizon, and monopole problems.
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This situation resembles several other historical episodes in which the success of a new

theory sets new standards, effectively upping the explanatory ante. Einstein’s successful pre-

diction of the anomaly in Mercury’s perihelion shift raised the bar for gravitational theories:

although the perihelion shift was not regarded as a decisive check prior to his prediction, after

the prediction it served as a litmus test for competing theories of gravitation.17 But there is

also a striking difference between cases like this one and inflation. Long before Einstein be-

gan to formulate GTR, the obsessively precise work of Urbain Le Verrier and Simon Newcomb

had established that Mercury’s observed perihelion motion presented Newtonian theory with a

significant anomaly, although opinions differed widely regarding how the anomaly should be

handled (Roseveare 1982).18 By way of contrast, the flatness problem was not even widely ac-

knowledged as a legitimate problem prior to Guth’s paper. In an appendix added to “convince

some skeptics,” Guth comments that:

In the end, I must admit that questions of plausibility are not logically determinable
and depend somewhat on intuition. Thus I am sure that some physicists will remain
convinced that there really is no flatness problem. However, I am also sure that many
physicists agree with me that the flatness of the universe is a peculiar situation which
at some point will admit a physical explanation. (Guth 1981, p. 355)

17Einstein’s contemporaries were aware that Mercury’s perihelion motion would be sensitive to mod-
ifications of Newtonian gravitation, but early reviews did not use this test as a criteria for eliminating
theories from consideration. For example, de Sitter (1911) remarks that Minkowski’s sketch of a mod-
ified gravitational theory leads to the wrong sign for the anomalous perihelion motion, but doesn’t treat
this as a reason for abandoning the theory.

18The essential point was established in Book I, Section 9 of Newton (1999): motion of the perihelion
is the most sensitive measure of the exponent in the force law for gravitation. Almost all of the observed
perihelion motion could be accounted for as perturbations due to interactions with the other planets. In
light of the small remaining anomaly one could either modify the inverse square law or alter assumptions
regarding the mass distribution in the solar system.
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Guth’s argument in the appendix may or may not have swayed many physicists, but the existence

of a solution to the flatness problem lent the problem itself an air of legitimacy. Misner’s de-

scription of the change in his assessment brought about by Guth’s paper illustrates one common

view among cosmologists:19

I didn’t come on board thinking that paradox [Dicke’s flatness paradox] was serious
until the inflationary models came out. [...] The key point for me was that inflation
offers an explanation. Even if it’s not the right explanation, it shows that finding an
explanation is a proper challenge to physics. (Lightman and Brawer 1990, p. 240)

The widespread assessment that solving these problems is a “proper challenge” insures that only

a theory that matches inflation’s ante will be taken seriously as an alternative.20

But the contrast above brings out the troubling prospect that cosmologists have limited

their explorations to theories that successfully solve pseudo-problems of their own making. The

problems solved by inflation are defined against a speculative theoretical backdrop: the “ques-

tions of plausibility” Guth alludes to require assumptions regarding the initial state of the uni-

verse, which is acknowledged to be well outside the domain of current theory. The existence of

these problems is based on a guess regarding the content of future theories: the as yet unformu-

lated theory applicable to t < 10
−35

sec after the big bang is assumed to produce a nonuniform

state. If this guess proves to be correct then something like inflation is needed to insure com-

patibility with observations, but if this guess proves to be wrong then the “problems” are red

herrings. Unlike the empirical anomaly in Mercury’s perihelion motion, the flatness problem is

19Lightman systematically asks every interviewee in (Lightman and Brawer 1990) about their assess-
ment of the flatness problem before and after inflation, providing a useful cross section of the field. Several
of the interviewees express views similar to Misner’s, as did some of the cosmologists I interviewed (Bar-
row 2002; Ostriker 2002; Rees 2002). See also Brawer (1996) for a detailed discussion of the changing
assessment of the horizon and flatness problems.

20This point has been clearly emphasized by several cosmologists; see, e.g., Edwin Turner’s comments
in Lightman and Brawer (1990, p. 317) and Peebles (1993, p. 393).
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defeasible. (I will take up this concern with the nature of fine-tuning problems in more detail

in Chapter 5.) Although some alternatives to inflation have been explored (discussed briefly be-

low), overall Guth’s rationale has convinced most cosmologists to focus their research efforts on

developing a working model of inflation. This is a significant methodological shift away from

clarifying the implications of different ideas in particle physics for cosmology.

4.2 The Nuffield Workshop: Birth of the Inflaton

The first international conference focusing on “very early universe cosmology (t < 1

sec)” convened in Cambridge from June 21 - July 9, 1982.21 Nearly half the lectures at the

Nuffield workshop were devoted to inflation, and the intense collaborations and discussions

during the workshop led to the “death and transfiguration” of inflation (from the title of the

conference review in Nature, Barrow and Turner 1982). One focus of the conference was the

calculation of density perturbations produced during an inflationary stage: Steinhardt, Starobin-

sky, Hawking, Turner, Lukash and Guth had all realized that this was a “calculable problem” (in

Steinhardt’s words), with the answer being an estimate of the magnitude of the density perturba-

tions, measured by the dimensionless density contrast δρ
ρ , produced during inflation. Preliminary

calculations of this magnitude disagreed by an astounding 12 orders of magnitude: Hawking cir-

culated a preprint (later published as Hawking 1982) that found δρ
ρ ≈ 10

−4, whereas Steinhardt

21The description is taken from the invitation letter to the conference (Guth 1997a, p. 223). The
Nuffield Foundation had previously sponsored conferences in quantum gravity, but shifted the focus
to early universe cosmology in response to interest in the inflationary scenario. A 1981 conference in
Moscow on quantum gravity also included numerous discussions of early universe cosmology (Markov
and West 1984), but Nuffield was the first conference explicitly devoted to the early universe. The 30
participants included all of the cosmologists mentioned in the previous section except Einhorn and Sato;
see the conference proceedings volume (Hawking et al. 1983) for a complete list of participants and their
lectures.
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and Turner initially estimated a magnitude of 10
−16.22 After three weeks of effort, the vari-

ous groups working on the problem had converged on an answer, but the answer proved to be

disastrous for new inflation.

These difficult calculations promised to fill a well-recognized lacuna in existing accounts

of structure formation. Although several alternative models had been developed from the 50s

onward, by 1980 mainstream models of structure formation were based on Lemaı̂tre’s idea that

gravitational enhancement of inhomogeneity is the primary mechanism for structure formation.

However, scaling arguments indicate that in the standard FLRW models these inhomogeneities

must have been present from the earliest stages of the universe (see, e.g., Harrison 1968). Main-

stream models of structure formation focused on the evolution of small primeval perturbations

in background FLRW spacetimes, treated via the linearized EFE, although they differed on the

nature of the initial perturbations. The initial perturbations were assumed to be a combination of

the following distinct modes:23

• adiabatic: Fluctuations in energy density of nonrelativistic matter ρm matched by radia-

tion fluctuations (also called “entropy perturbations”), 4
3

δρm
ρm

= δρr
ρr

,

• isothermal: Radiation is uniformly distributed, δρr
ρr

= 0, although the matter is non-
uniformly distributed.

22The density contrast is defined by δρ(x)
ρ = ρ(x)−ρ̄

ρ̄ , where ρ̄ is the mean density. An astute reader
may worry about the gauge invariance of such a quantity, a point I will discuss below. These initial results
are discussed in Guth (1997a, pp. 216-224).

23Zel’dovich introduced this terminology. The factor of 4
3 arises since the energy density of radiation is

∝ T
4, compared to T

3 for matter. These are called “adiabatic” perturbations since the local energy density
of the matter relative to the entropy density is fixed. A third mode – tensor perturbations, representing
primordial gravitational waves – were not usually included in discussions of structure formation, since
they do not couple to energy-density perturbations.
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The evolution of initial perturbations of these two types was studied throughout the 60s and 70s.

In broad terms, two different schools of thought dominated the field: Zel’dovich’s school fo-

cused on solutions in which large “blinis” (pancakes) formed first, fragmenting into galaxies and

structures much later due to non-gravitational processes. The other school of thought developed

a “bottom-up” scenario, in which initial fluctuations developed into proto-galaxies with larger

structures forming later, all as a consequence of gravitational instability.

For both approaches the origin and nature of the initial perturbations were crucial com-

ponents of the theory. Harrison, Peebles, and Zel’dovich independently suggested a particularly

simple form for the initial perturbations: a scale-invariant spectrum of adiabatic perturbations

(hereafter the HPZ spectrum) such that δρ
ρ |λ = constant when λ, the perturbations’ wave-

length, is equal to the Hubble radius, λ = H
−1.24 For different wavelengths the perturba-

tion amplitude is fixed at different times: in an expanding universe, the wavelength λ increases

with the scale factor a(t) whereas the Hubble radius increases at a slower rate as the expansion

slows.25 The Hubble radius “crosses” various perturbation wavelengths in an expanding model;

a scale-invariant spectrum deserves the name since the perturbations have the same magnitude

as the Hubble radius sweeps across different length scales. The HPZ spectrum lacks character-

istic length scales. Peebles, Zel’dovich and others were able to calculate the expected evolution

of density perturbations (modulo a number of hotly debated auxiliary assumptions) and thereby

24The spectrum was introduced independently in Harrison (1970); Peebles and Yu (1970); Zel’dovich
(1972). In general, for a scale invariant power spectrum the Fourier components of the perturbations obey
a power law, |δk|

2 ∝ k
n; the Harrison-Zel’dovich-Peebles spectrum corresponds to a choice of n = 1 or

n = −3, depending on the choice of volume element in the Fourier transform: n = 1 for a choice of dk
k ,

and n = −3 for k
2
dk. Finally, note that the Hubble radius does have dimensions of length: restoring c, it

is given by c
H , and the Hubble constant is given in units of km per second per megaparsec.

25Since the perturbations grow with time, at a “constant time” the shorter wavelength perturbations have
greater amplitudes for this spectrum. The difficulty with defining the spectrum of density perturbations in
terms of “amplitude at a given time” is that it depends on how one chooses the constant time hypersurfaces.
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constrain the initial spectrum based on observed large scale structure and, much more stringently,

by the isotropy of the CMBR. Estimates of the magnitude of density perturbations when length

scales associated with galaxies crossed the Hubble radius fell within the range δρ
ρ ≈ 10

−3−10
−4.

Finally, the initial perturbations were often assumed to be a form of random noise, which holds if

the mass found within a sphere of fixed radius has a Gaussian distribution (for different locations

of the sphere).26

Two features of the initial spectrum were particularly disturbing to cosmologists. The

Hubble radius is equal to the length scale associated with a galaxy at around t ≈ 10
9 seconds;

at earlier times the perturbation was coherent on scales far larger than the Hubble radius. This

would require trans-Hubble radius coordination, and this appeared to be in conflict with the pres-

ence of particle horizons. Bardeen concludes a study of the evolution of density perturbations as

follows (Bardeen 1980, p. 1903):

The one real hope for a dynamical explanation of the origin of structure in the Uni-
verse is the abolition of particle horizons at early times, perhaps through quantum
modifications to the energy-momentum tensor and/or the gravitational field equa-
tions which in effect violate the strong energy condition.

But Bardeen’s focus on particle horizons as the fundamental obstacle was not shared by others in

the field; Peebles (1980), for example, frequently mentions the puzzles associated with horizons,

but apparently takes this to be one of many indications that we do not sufficiently understand

physics near the big bang. Secondly, it was difficult to imagine how to “spontaneously generate”

an initial perturbation spectrum with an amplitude such that linear growth of the perturbations

satisfies the constraint above. An early suggestion, that the density perturbations were due to

26Equivalently, for a Gaussian perturbation spectrum the phases of the Fourier modes δk are random
and uncorrelated.
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thermal fluctuations at early times, suffered from the following limitations (Peebles 1980, §4).

Suppose that at some time ti the matter and radiation in the universe is assumed to have thermal

fluctuations away from uniformity, given by a Poisson distribution
(

δρ
ρ

)

i
≈ N

−1/2, where N

gives the number of particles. For a galaxy-sized lump of particles, say N ≈ 10
80, the density

contrast is δρ
ρ ≈ 10

−40. This is far too large for very early choices of ti, such as the Planck time,

if one takes the universe to begin at ti with an “imprint” of thermal fluctuations (setting aside the

question of how to arrange a coherent galaxy-mass fluctuation).27 And it seems inappropriate to

treat ti as a free variable, choosing when to “imprint” a spectrum of thermal fluctuations such

that the amplitudes match observations.

Cosmologists hoping to explain the origin of initial perturbations plucked ideas from

the ample storehouse of speculative physics: Planck scale metric fluctuations, gravitational

particle production, primordial black holes, “gravithermal” effects, primordial turbulence, non-

equilibrium dynamics, and so on.28 Sakharov (1966) was the first to propose a detailed quantum

description of the initial perturbations, but this early paper drew no attention, partially because

it was an extension of Zel’dovich’s “cold bang” proposal that fell from favor following the dis-

covery of the CMBR. From the mid-70s onward the newest item in the storehouse—early uni-

verse phase transitions—was pulled from the shelf and pressed into service. Zel’dovich (1980)

proposed that string-like topological defects formed during a phase transition could provide an

initial spectrum of density perturbations. Vilenkin also suggested strings as the origin of the

initial spectrum in a series of seminal papers starting in 1981 (although his proposal differed

27Blau and Guth (1987) compare this density contrast imposed at ti = 10
−35 seconds to the fluctuations

required by the constraint mentioned in the last paragraph; evolving backwards, this constraint implies
δρ
ρ ≈ 10

−49 at ti, nine orders of magnitude smaller than thermal fluctuations.
28See Barrow (1980) for a brief review of some of these ideas and references, and Peebles (1980);

Zel’dovich and Novikov (1983) for more comprehensive overviews of the field.
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from Zel’dovich’s), and the study of defects as the seeds of galaxy formation continued until

the late 90s. But studies of the impact of phase transitions did not focus exclusively on the for-

mation of defects. Press (1980) argues that the “tangled” nature of the gauge fields in different

domains leads to inhomogeneities in the energy density appropriate to seed galaxy formation,

but not topological defects.29 In Press’s scenario, inhomogeneities in the vacuum stress energy

are converted into fluctuations in the energy density of matter and radiation. This “conversion”

only works if the vacuum stress energy does not itself gravitate; Press notes the speculative na-

ture of this suggestion, but argues that the other possibility – an incredibly precise cancellation

of vacuum energy density – is equally unappealing.30 Although I do not have space to discuss

other proposals, in the spring of 1982 the origin of the initial perturbations remained one of the

fundamental mysteries in cosmology.

The several groups studying the inflationary scenario faced a clear problem: does in-

flation succeed where these earlier proposals had failed? Prima facie inflation exacerbates the

problem: as Barrow and Turner (1981) noted, inflation dramatically reduces the amplitude of

any pre-existing fluctuations. But prior to Guth’s paper Mukhanov and Chibisov (1981); Lukash

(1980) had both argued that a de Sitter phase could generate perturbations by “stretching” zero-

point fluctuations of quantum fields to significant scales. Hawking rediscovered the idea, and

argued that initial inhomogeneties in the φ field would imply that inflation begins at slightly

different times in different regions; the inhomogeneties reflect the different “departure times”

29Press justifies this neglect of topological defects as follows: “In this paper we will not need to pos-
tulate the formation of thin-walled domain structure ...,” which are associated with discrete symmetries;
later he comments that “We are interested in gradients of the [gauge fields] on scales many orders of
magnitude larger than the horizon size at T = Tc, so there is no possibility of domains this large forming
before the massive bosons have decayed away to lighter particles.” But Press gives no argument to estab-
lish that other defects would not form. This is odd, especially since his argument depends on the same
features that lead to defect formation: the gauge fields take different values in different domains, and the
resulting “tangle” of values as the domains coalesce is the source of inhomogeneity.

30See Appendix B.2 for a brief discussion of the cosmological constant problem.
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of the scalar field. Hawking’s preprint claimed that this results in a scale-invariant spectrum

of adiabatic perturbations with δρ
ρ ≈ 10

−4, exactly what was needed in accounts of structure

formation. But others pursuing the problem (Steinhardt and Turner; Guth and his collaborator,

So-Young Pi) did not trust Hawking’s method; Steinhardt has commented that he “did not be-

lieve it [Hawking’s calculation] for a second” (Steinhardt 2002, cf. Guth 1997a, pp. 222-230).

There were two closely linked concerns with Hawking’s method (beyond the sketchiness of his

initial calculations): it is not clear how this approach treats the evolution of the fluctuations in

different regimes, and it is also not gauge invariant.

The “gauge problem” in this case reflects the fact that a “perturbed spacetime” cannot be

uniquely decomposed into a background spacetime plus perturbations. Slicing the spacetime up

along different surfaces of constant time leads to different magnitudes for the density perturba-

tions. The perturbations “disappear,” for example, by slicing along surfaces of constant density.

In practice, almost all studies of structure formation used a particular gauge choice (synchronous

gauge), but this leads to difficulties in interpreting perturbations with length scales greater than

the Hubble radius.31 Press and Vishniac (1980) identify six “tenacious myths” that result from

the confusion between spurious gauge modes and physical perturbations for λ > H
−1. This

problem is significant for the inflationary account because over the course of an inflationary stage

perturbations of fixed length go from λ << H
−1 to λ >> H

−1. Length scales “blow up” during

31Synchronous gauge is also known as “time-orthogonal” gauge: the coordinates are adapted to con-
stant time hypersurfaces orthogonal to the geodesics of comoving observers. All perturbations are con-
fined to spatial components of the metric; i.e., the metric has the form ds

2
= a

2
(t)(dt

2 − hijdx
i
dx

j
),

with i, j = 1, 2, 3. The coordinates break down if the geodesics of co-moving observers cross.
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inflation since they scale as a(t) ∝ e
Ht, but the Hubble radius remains fixed since H is approxi-

mately constant during the slow roll phase of inflation.32 For this reason it is especially tricky to

calculate the evolution of physical perturbations in inflation using a gauge-dependent formalism.

The first problem mentioned in the previous paragraph is related: determining the imprint of ini-

tial inhomogeneties requires evolving through several regimes, from the pre-inflationary patch,

through the inflationary stage and reheating to standard radiation-dominated evolution.

Hawking and Guth pursued refinements of Hawking’s approach throughout the Nuffield

Workshop.33 The centerpiece of these calculations is the “time delay” function characterizing

the start of the scalar field’s slow roll down the effective potential. This “time delay” function

is related to the two-point correlation function characterizing fluctuations in φ prior to inflation,

and it is also related to the spectrum of density perturbations, since these are assumed to arise as

a result of the differences in the time at which inflation ends. However, these calculations treat

the perturbations as departures from a globally homogenous solution to the equations of motion

for φ, and do not take gravitational effects into account. How this approach is meant to handle

the gauge problem is also not clear. Starobinsky’s approach lead to a similar conclusion via a

different argument: as in the first approach, the time at which the de Sitter stage ends is effec-

tively coordinate dependent (Starobinsky 1982). The source of these differences is not traced

to the production of “scalarons” during the de Sitter stage rather than a “time delay” function

for the scalar field (see, in particular Starobinsky 1983, p. 303). Finally, Steinhardt and Turner

enlisted James Bardeen’s assistance in developing a third approach; he had recently formulated

a fully gauge invariant formulation for the study of density perturbations (Bardeen 1980). Using

32This is often referred to as “horizon exit and re-entry,” but the Hubble radius H
−1 should not be

confused with the particle horizon. I will return to this point in Chapter 6; cf. Appendix A.3.
33These efforts were later published as (Hawking 1982; Guth and Pi 1982).
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Bardeen’s formalism, the three aimed to give a full account of the behavior of different modes of

the field φ as these evolved through the inflationary phase and up to recombination. The physi-

cal origin of the spectrum was traced to the qualitative change in behavior as perturbation modes

expand past the Hubble radius: they “freeze out” as they cross the horizon, and leave an imprint

that depends on the details of the model under consideration.34

Here I will not give a more detailed comparison of these three approaches. Despite

the conflicting assumptions and different underlying methodology of the three approaches, the

participants of the Nuffield workshop apparently lent greater credibility to their conclusions

due to the rough agreement they achieved. Guth and Pi defended the various approximations

used in their approach (see Blau and Guth 1987, for references and discussion), but the method

developed in Bardeen et al. (1983) has been the basis of most subsequent work.35 During the

three weeks of intense collaborative effort at Nuffield these different approaches converged on

the following results. In Bardeen et al. (1983)’s notation, the spectrum of density perturbations

is related to the field φ by:

δρ

ρ
|λ = AH

∆φ

φ̇
, (4.6)

where λ ≈ H
−1, and A is a constant depending on whether the universe is radiation (A = 4)

or matter (A = 2/5) dominated when λ “re-enters” the Hubble radius. The other quantities

on the RHS are both evaluated when λ “exits” the Hubble radius: ∆φ is the initial quantum

fluctuation in φ, on the order of H
2π . The value of φ̇ is given by (from 4.3) φ̇ ≈ V ′(φ)

3H , and V
′

depends on the coupling constants appearing in the effective potential. For a Coleman-Weinberg

34The sub-Hubble radius modes evolve like the modes of a damped harmonic oscillator, whereas super-
Hubble radius modes evolve like an overdamped oscillator.

35See, in particular, the comprehensive review of structure formation given in Mukhanov et al. (1992).
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effective potential with “natural” coupling constants, φ̇ < H
2; plugging this all back into the

initial equation we have:

δρ

ρ
|λ > A

H
2

2πH2 ≈ .1 − 1 (4.7)

Inflation naturally leads to an HPZ spectrum, which is also Gaussian (see, e.g., Bardeen et al.

1983). But reducing the magnitude of these perturbations to satisfy observational constraints

requires an unnatural choice of coupling constants. In particular, the conflict with observations

can be evaded if the term B in the effective potential is very small, which is equivalent to requir-

ing an incredibly small self-coupling for the Higgs field, on the order of 10
−8. In the context of

simple GUTs, this coupling constant is expected to be on the order of 1, and there is no straight-

forward modification that leads to such a small coupling constant.36 New inflation appeared to

replace the fine-tuning of the big bang model with fine-tuning of the effective potential for the

field driving inflation.

Calculations of the perturbation spectrum culminated in a Pyrrhic victory: a Coleman-

Weinberg potential provided a natural mechanism for producing perturbations, but it could be

corrected to give the correct amplitude only by abandoning any pretense that the field driving

inflation is a Higgs field in SU(5) GUTs. However, it was clear how to develop a newer “new

inflation” model; before the conclusion of the conference Bardeen, Steinhardt, and Turner had

suggested that the effective potential for a scalar field in a supersymmetric theory (rather than the

Higgs field of a GUT) would have the appropriate properties to drive inflation. At roughly the

same time Ellis et al. (1982) argued that inflation “cries out for supersymmetry,” since a scalar

field responsible for supersymmetry breaking would naturally have a potential flatter than the

36See Steinhardt and Turner (1984, pp. 2165-2166) for a clear discussion of this constraint, which is
also discussed in detail in Kolb and Turner (1990); Linde (1990).
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Coleman-Weinberg potential. The “transfiguration” of the field involved a significant shift in

methodology: the focus shifted to implementing inflation successfully rather than treating it as

a consequence of independently motivated particle physics. The introduction of the “inflaton”

field, a scalar field custom made to produce an inflationary stage, roughly a year later illustrates

this methodological shift.37 In his recollections of the Nuffield conference, Guth writes:

[A] key conclusion of the Nuffield calculations is that the field which drives inflation
cannot be the same field that is responsible for symmetry breaking. For the density
perturbations to be small, the underlying particle theory must contain a new field,
now often called the inflaton field [...], which resembles the Higgs field except that
its energy density diagram is much flatter. (Guth 1997a, pp. 233-34)

The inflaton may resemble the Higgs, but the rules of the game have changed: it is a new fun-

damental field distinct from any scalar field appearing in particle physics. Experiments carried

out throughout the early to mid 80s failed to detect proton decay on time scales predicted by the

minimal SU(5) GUTs (Blewitt et al. 1985). Models of inflation have been based on a number

of theoretical ideas that became popular following the demise of the minimal GUTs.

4.3 The Baroque Era

Following the Nuffield workshop, inflation turned into a “paradigm without a theory,”

borrowing Mike Turner’s phrase, as cosmologists developed a wide variety of models bearing

a loose family resemblance. The models share the basic idea that the early universe passed

through an inflationary phase, but differ on the nature of the “inflaton” field (or fields) and the

form of the effective potential V (φ). Keith Olive’s review of the first decade of inflation ended

37Several researchers studied scalar fields with the appropriate properties to drive inflation, but the
term seems to have appeared first in Nanopoulos et al. (1983); see Shafi and Vilenkin (1984) for a similar
model. I thank Keith Olive for bringing the first paper to my attention.
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by bemoaning the ongoing failure of any of these models to renew the strong connection with

particle physics achieved in old and new inflation:

A glaring problem, in my opinion, is our lack of being able to fully integrate in-
flation into a unification scheme or any scheme having to do with our fundamental
understanding of particle physics and gravity. ... An inflaton as an inflaton and
nothing else can only be viewed as a toy, not a theory. (Olive 1990, p. 389)

The title of this section derives from Dennis Sciama’s complaint (in 1989) that inflation had

entered “a Baroque state” as theorists constructed increasingly ornate toy models (Lightman and

Brawer 1990, p. 148). The sheer number of versions of inflation is incredible; Guth (1997a,

p. 278) counts over 50 models of inflation in the neary 3,000 papers devoted to inflation (from

1981 to 1997), and both numbers have continued to grow. Cosmologists have even complained

about the difficulty of christening a new model with an original name, and a partial list of the

inflationary menagerie has been used to good effect as comic relief in conference talks.38

Inflationary model-building has proceeded with very different programmatic aims. Three

broad approaches have characterized the field over the last two decades. What I will call the “new

inflation paradigm” aims to eventually re-establish a strong connection between inflationary cos-

mology and particle physics. The persistent problem is then to identify a fundamental scalar field

in a believable model of GUT scale physics, and establish that it “naturally” has the appropri-

ate properties needed to drive inflation. The other two approaches downplay the importance of

this link. Since the early 80s Linde has argued that “chaotic inflation” evades the “fine-tuning”

problems of new inflation. Later work on “eternal inflation” develops a similar approach: on this

approach inflation is a well-defined theory even without a link to particle physics, and an (often

38See Edward (Rocky) Kolb’s talk at the Pritzker Symposium; the slides from his talk are available
online at http://www-astro-theory.fnal.gov/Conferences/psw/talks/kolb/.
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confusing) combination of probability arguments and invocations of the anthropic principle are

taken to provide a sufficient response to the fine-tuning problems of new inflation. Finally, in

the 90s a number of authors have pursued a phenomenological approach intended to clarify the

links between the effective potential and the spectrum of temperature anisotropies in the CMBR,

in preparation for an eliminative program based on satellite observations.
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Fig. 4.1 This figure illustrates the effective potential of the Higgs field in original inflationary model.

true vacuum

V

Φ

false vacuum

Fig. 4.2 The effective potential of the Higgs field in the new inflation scenarios differs from old inflation in
that evolution from the false to true vacuum state need not involve quantum tunneling through a potential
barrier. Inflation occurs during the “slow roll” phase down the flat part of V (φ).
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Chapter 5

Cosmological Principles

From its early days in the 20s and 30s, modern cosmology has faced a number of dis-

tinctive methodological problems. In broad terms, these problems reflect the difficulty of using

observational evidence from a small patch of the unique universe as a guide in developing and

refining cosmological theories. Remarkable progress in cosmology has been accompanied by

a sense that these old methodological debates have been laid to rest. In particular, arguments

that cosmology differs from other areas of physics have been pushed to one side; one looks in

vain for a discussion of the implications of the uniqueness of the universe in many cosmology

textbooks (such as Kolb and Turner 1990). The fundamental question underlying the second part

of this dissertation is whether it is possible to develop and refine cosmological theories using the

same methodology as other areas of physics.

In this chapter I will introduce the methodological issues by focusing on the threat of

underdetermination in cosmology and the general principles introduced in response to it. The

distinct underdetermination problems can perhaps best be introduced in terms of three infer-

ences. First, cosmologists often aspire to draw conclusions regarding the overall global structure

of the universe on the basis of observations restricted to our (relatively small) cosmic neighbor-

hood. The cosmological principle underwrites local to global inferences in that it restricts the

allowed space of models to the simple FLRW models, and in these models the local behavior of

idealized “fundamental observers” accurately reflects the global shape of space. Second, how
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does one determine which observational regularities reflect the laws of nature in cosmology?

Part I recounted the importance of the “indifference principle” (using McMullin’s phrase) in the

development of early universe theories. The indifference principle licenses an inference from the

improbability of an observed regularity to the need for novel physics, typically in the form of new

dynamics in the early universe. A theory satisfying this principle is “indifferent” to some fea-

tures of the contingent initial state, which are washed away by subsequent dynamical evolution.

Finally, all of the evidence used in cosmology is inherently parochial: we observe the universe

from a location suited for our existence. This straightforward point undercuts inferences based

on treating our location as somehow “typical,” but it is not clear how to appropriately account

for this selection effect. Discussions of this worry have gone under the rubric of the anthropic

principle, which has been given a number of different formulations.

As with other high-level principles in physics, the epistemic status of these principles is

difficult to assess. For their proponents, once clearly formulated these principles are often taken

to be self-evidently true, or to be straightforward consequences of the Scientific Method. After

characterizing the principles more carefully below, I will argue that they each have a very differ-

ent status. The cosmological principle (hereafter, CP) falls in with other broad claims regarding

the uniformity of nature used to license inductive inferences. As with other uniformity princi-

ples, the CP carries epistemic risk, but unlike other cases, the consequences of accepting the

CP are remarkably unproductive. I will argue that the indifference principle is on considerably

shakier footing, despite its important (and usually implicit) role in current research. The indif-

ference principle is a response to a different, and more fundamental, underdetermination threat,

due to uncertainty regarding how to theoretically describe the initial singularity. The “probable

initial state” serves as a background template, with important problems defined by the contrast
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between the template and observations. But this approach is questionable precisely because it

involves strong physical and metaphysical assumptions. The description of the probable initial

state is a guess based on the extrapolation of current physics well beyond its domain of applica-

bility. Even if the “template” based on this guess is accurate, the indifference principle makes

the additional strong metaphysical claim that all the problems defined by the contrast should be

solved by introducing new laws. Finally, my brief discussion of the anthropic principle defends

a deflationist account. In the standard anthropic argot, I argue that WAP (the “weak anthropic

principle”) represents a legitimate concern, but the stronger versions of the principle verge on

incoherence.

5.1 Two Approaches to Cosmology

The sciences arguably fall into two camps: nomothetic sciences that seek to discover

and characterize the fundamental laws of nature, and descriptive or special sciences that employ

generalizations of limited scope rather than strict laws. Philosophers have frequently argued

that cosmology falls into the latter camp, echoing Kant’s skepticism regarding the possibility of

scientific cosmology.1 Yet the research described in part I belies this classification: cosmologists

have been developing and apparently testing novel physical theories in cosmology for several

decades. Here I will briefly argue that the modest view that cosmology is a descriptive science

is an unstable position, and identify two forces pushing cosmologists into the more ambitious

project of pursuing novel physical laws in cosmology. To formulate these points I will begin

1This is one of the perennial topics in philosophy of cosmology; see, e.g., Munitz 1962 and several of
the essays in Agazzi and Cordero 1991. My approach here is closest to Torretti (2000)’s, in that I aim to
give a richer description of the contrast between mathematical modelling in cosmology and other areas of
physics.
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with a thumbnail sketch of dynamical theories in physics, and introduce the methodological

constraint that these theories should be dynamically and empirically sufficient.2 Here I will not

have space to defend this understanding of dynamical theories; rather my aim is to set the stage

by contrasting this picture with cosmology.

The two basic components of a dynamical theory are a space representing dynamically

allowed states, a topological space Γ (aka phase space), and a dynamical law that specifies time

evolution of the system.3 The dynamics is given by a map f : Γ × R × ... → Γ, which takes a

point in Γ to another point representing the state after an elapsed time t ∈ R. The “×...” may

be filled with a number of other real-valued parameters, such as masses of particles or coupling

constants for interactions. Often Γ is a differentiable manifold, with the dynamics described by

a set of differential equations governing the evolution of a set of fields defined on the manifold.

For example, the phase space for a collection of n point particles moving in three-dimensional

Euclidean space is a 6n-dimensional manifold (three position and three momentum coordinates

for each particle, q
i and pi respectively). The state of the system is picked out by a point in this

phase space, ω = (q, p) = (q
1
, ..., q

3n
, p1, ..., p3n) ∈ Γ, and Hamilton’s equations specify the

dynamical evolution of the system:

q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi
, (5.1)

2The terminology is borrowed from Lewontin (1974)’s clear discussion of the difficulties faced in
population genetics, which I think George Smith for bringing to my attention. The discussion also draws
on Laura Ruetsche’s approach to interpreting theories; see Ruetsche (2002) for a concise presentation.

3At a minimum Γ is a topological space, with the idea of proximity provided by the topology roughly
corresponding to physical similarity between states, but it is often provided with additional mathematical
structure such as a symplectic form or a coordinate chart.
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where H is the (usually time independent) total energy of the system. Solutions of these equa-

tions specify dynamical trajectories through phase space representing the evolution of the par-

ticles’ position and momentum over time. A complete specification of the state of the system

includes these time-dependent quantities (called dynamical variables) along with any other prop-

erties (such as masses of the particles) that are time-independent. A model for the theory con-

sists of a specification of the function H along with the initial or boundary conditions of the

dynamical variables. The semantics of the theory clarifies the truth conditions for the theory by

identifying the set of possible worlds that serve as models of the theory. In our simple example,

the semantics specify how to relate claims about observable properties of a physical system to

regions of phase space. The total kinetic energy of a system of particles, for example, is rep-

resented as T =
∑n

i=1

p
2
i

2m for n particles. This is simply a function from phase space to real

numbers: fT : Γ → R. The experimental question “Is the total kinetic energy within the range

∆?” will receive a positive (negative) answer for a state ω such that fT (ω) ∈ ∆ (respectively,

fT (ω) /∈ ∆).

In a dynamically sufficient theory the state space and dynamical laws are well-matched,

in the sense that the theory admits a well-posed initial value formulation. The first requirement

of such a formulation is that fully specifying the dynamical variables at an initial time singles

out a unique trajectory through phase space. Second, the system should be relatively insensitive

to small changes in the dynamical variables: the bundle of trajectories passing through an open
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set around a point in Γ should not “spread out” in phase space too quickly.4 For systems satis-

fying these two requirements, measurements compatible with some subset of Γ combined with

the dynamics governing the system yield various predictions regarding the system’s future state.

Practical limitations in measuring a system’s state combined with the magnification of errors

under dynamical evolution limit the theory’s predictive power. The standards of predictive accu-

racy depend upon the context, but often it is sufficient to locate a system’s state within a subset

of the phase space such that answers to all the experimental questions of interest fall within some

acceptable range ∆.

The ambition to include all of the physical degrees of freedom for a given system ob-

viously runs up against practical concerns with developing a tractable theory as well as the

daunting complexity of real systems. The compromise—simple, idealized models—results from

dropping features that are negligible at the desired level of accuracy, or arguing that various

features not incorporated in the model should be negligible. The nature of idealizations is a con-

tentious topic in philosophy of science, but I assert that (at least in some cases) physicists have

“control” over the idealizations involved in applying a theory in the following sense. Hempel

(1988) argued that deriving predictions from a theory typically requires a “proviso” that the the-

ory is complete, even when it is acknowledged that the theory offers only a partial description

of the phenomena within its domain. The application of Newtonian gravitational theory to plan-

etary motion, for example, requires a proviso stating that the only forces acting on the bodies

4Filling in the details of what counts as well-posed requires considering specific theories. But two fur-
ther points are worth noting. Earman (1986) emphasized that contrary to the conventional wisdom many
theories of classical physics admit a well-posed initial value formulation only if various supplementary
conditions are imposed. Second, for relativistic theories a well posed formulation is also required to sat-
isfy a constraint on causal propagation: changes to initial data associated with some spacetime region
Σ should not affect the solution in regions that are causally inaccessible from it (i.e., regions outside of
J
±

(Σ), in the language of Appendix A.4).
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are those due to their mutual gravitational attraction, ruling out electromagnetic, vegetative, an-

gelic ... forces. Treating the theory as a complete description in this manner allows one to draw

strict inferences regarding planetary motion (based on a differential equation derived from the

laws of motion), whereas without such a proviso the theory literally has no implications for fu-

ture planetary motions with given initial positions.5 The further advantage of this “control” is

that discrepancies between the conclusions of theoretical inferences and observational or experi-

mental results are particularly informative in developing successively more complicated models.

Returning to the example of planetary motion, discrepancies between the simple two-body case

and more complicated motions were used to refine the theory by (among other things) including

perturbing forces from the other planets. On this account, physical theories aim not to capture

the full complexity of real systems all at once, so to speak, but rather to develop a series of in-

creasingly sophisticated models, in the process developing a more detailed and informative body

of evidence.6 The long term success of the theory hinges not on capturing the full complexity

of a system at the first stroke, but rather on giving careful attention to the nature of the provisos

needed to make exact inferences and successfully accounting for discrepancies that arise without

abandoning the framework provided by the theory.

5Hempel argues that provisos of this sort must be stated in the language of the theory at hand (VC)
rather than the antecedently available vocabulary VA, and notes that his claim regarding provisos is
stronger than the Quine-Duhem underdetermination thesis, in that no set of auxiliary hypotheses for-
mulated in VA can play the role of a proviso. The provisos play a crucial role in applying theory: within
the subset of models picked out by a proviso ruling out all but gravitational forces, the machinery of New-
tonian mechanics links logically contingent propositions (formulated in VA) describing an initial matter
distribution to future motions. See Earman and Roberts (1999) for a clear discussion of Hempel that care-
fully distinguishes his position from more recent worries (sometimes claimed to derive from Hempel’s
paper) about ceteris paribus clauses.

6The clearest statement of this methodology is given by George Smith, in a sophisticated account of
Newton’s methodology in the Principia, Smith (2002a,b); I have also benefitted from discussions with
him on this topic.
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To qualify as empirically sufficient the theory’s predictions must pass muster by falling

within some acceptable error range of observational results. But at a deeper level the parameters

appearing in the evolution laws and the dynamical variables must be measurable, even though

measurements of them typically are very indirect and theory-mediated. Some observational

evidence related to a dynamical theory serves a primarily “diagnostic” role, in that it must be

used to constrain the various parameters occurring in the theory. But ideally the theory generates

a wide range of predictions once these values have been set. Otherwise one runs the risk that

the theory employs sufficient degrees of freedom to model the phenomena in question regardless

of the accuracy of the dynamical theory. (I will return to this issue in Chapter 7.) Furthermore,

various different phenomena covered by the theory can be taken as independent diagnostics for

the parameters occuring in the theory, and achieving convergent measures of the parameters of

the theory by a variety of independent methods is in itself an important component of empirical

success.7

Finally coming back to the discussion of cosmology, in the modest or descriptive ap-

proach the laws of cosmology are given by extrapolations of dynamical theories developed in

fundamental physics, such as GTR and the Standard Model of particle physics. The goal is the

development of a consistent cosmological model based on these ideas with no attempt to justify

the underlying physical theories, although the cosmological domain may provide a weak consis-

tency check on the tremendous extrapolations involved in applying these theories. In the terms

used above, judging the dynamical and empirical sufficiency of these underlying theories is left

aside, and the project of developing a consistent and detailed cosmological account resembles

7This point is also taken from studies of Newtonian methodology, see, e.g., Harper (1997) and refer-
ences therein.
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research in phenomenological physics or the special sciences rather than fundamental physics.

As in other special sciences, cosmologists may discover various generalizations, such as regular-

ities regarding the formation and evolution of galaxies. Although these general claims may draw

on a wide variety of physical theories, they will be contingent in that they do not hold true in all

the possible models admitted by the underlying fundamental theory. On this view the attempt to

develop novel physical theories in cosmology would be as misguided as, say, attempts to develop

new fundamental physics that accounts for all aspects of the Krebs cycle. Although the laws of

physics are clearly relevant in both cases, some aspects of the observed regularities reflect the

consequences of various contingencies rather than features of the laws.8

This brief sketch brings out how little the “modest approach” resembles the practice

of modern physical cosmology described in Part I. The modest approach more aptly describes

Sandage’s observational program to determine the best fit FLRW model. Sandage’s two numbers—

the Hubble constant H and the deceleration parameter q—are both features of a model describ-

ing the universe as a whole, defined in terms of the scale factor a(t) and its first and second

derivatives (as is another important parameter, the critical density ρc):9

H(t) =:
ȧ

a
, q(t) =: − äa

ȧ2 , ρc =:
3ȧ

2

8πGa2 (5.2)

The observerational repertoire of Sandage and his colleagues consisted of different ways of

indirectly measuring the scale factor a(t), the fundamental dynamical variable in the FLRW

8See also Beatty (1995)’s argument for the “evolutionary contingency thesis,” namely that there are
no “distinctively biological” laws governing the contingent products of evolution (such as the details of
cellular function), although there may be relevant lawlike regularities derived from physics and chemistry.

9For the FLRW models, q0 = Ω0/2. G is Newton’s constant, and ȧ = da/dt, where t is the time
coordinate in the FLRW line element.
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models. Yet the scale factor is a well-defined global quantity only in the FLRW models. The

scale factor characterizes the time variation of the distance between “fundamental observers,”

who are by definition at rest with respect to the spatial coordinates of the FLRW line element

(eqn. A.7). The symmetries of the models also fix a preferred cosmic time, corresponding to

the proper time measured by clocks carried by the fundamental observers. The definition of a(t)

takes full advantage of the symmetries of the FLRW models. In more general solutions lacking

the unrelenting symmetry of the FLRW models the “global” scale factor is replaced by a quantity

characterizing only local expansion rates (see Appendix A.2 for a brief discussion).

This brings out the first motivation for moving beyond a modest approach: justifying

the idealization employed in the FLRW models. In the study of planetary motion, Newton’s

gravitational theory provided the tools needed to build a complex model starting from the sim-

ple and well understood idealization of the two body problem. By contrast, in the case of the

FLRW models the idealization is justified not by utilizing a proviso to the effect that the theory

is complete, but in terms of approximate compatibility with observations and/or a stipulation

that the overall matter distribution in the universe can be treated as a perfect fluid. Cosmologists

have found this situation unsatisfactory, particularly since the symmetry of the FLRW models

is suggestive of some deeper underlying physical principle. The development of inflation il-

lustrates the advantage of a physical jusitification for the FLRW models: the deviations from

the exact symmetry of the FLRW models have become the primary source of further evidence

for inflationary theory. Without some understanding of why the nearly exact symmetry of the

FLRW models obtains, it is unclear whether the small nonuniformities in the CMBR have any

physical import. The second force pushing cosmologists away from a modest approach is that in
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the standard big bang model, the early universe reaches arbitrarily high energies as t → 0, and it

thus serves as a natural testing ground for new ideas in particles physics.

5.2 Global Aspects of Cosmology

Classical mechanics and other areas of physics typically describe the properties and evo-

lution of local systems. One of the novel aspects of relativistic cosmology is the introduction

of global features of spacetime models that cannot be reduced to local properties. Earlier dis-

cussions of the global aspects of cosmology focused on the “logic of cosmology” (the title of

Munitz 1962): Harré (1962), for instance, classifies two ways of arriving at the global claims

characteristic of cosmology. Cosmologists can either ratchet up the concepts of local physics by

“type elevation,” characterized as application of predicates (like entropy) defined for members of

a class – isolated subsystems – to the class as a whole, namely the whole Universe (conceived of

as a single object comprising all that there is). On the other hand, global claims may be arrived at

by indefinite generalization of claims regarding our cosmic neighborhood to the entire Universe.

Harré uses this distinction to draw a line of demarcation: type elevation leads to “unintelligible

propositions,” and cosmologists must stick to indefinite generalizations if their theories are to

be scientific.10 Worries about global properties have not been confined to philosophers attempt-

ing to adjudicate cosmological debates from their armchairs; recently Smolin has argued that a

cosmological theory must satisfy the following principle:11

10Harr é argued in support of the steady state theory: “cosmogonic” theories incorporating a creation
event were on the wrong side of this line, whereas postulating new local physical processes (such as the
creation of matter) was an acceptable part of “cosmophysics.”

11He takes this to be a straightforward consequence of the standard epistemology and methodology of
dynamical theories, “[A] theory of cosmology must be falsifiable in the usual way that ordinary classical
and quantum theories are. This leads to the requirement that a sufficient number of observables can be
determined by information that reaches a real observer inside the universe to determine either the classical
history or quantum state of the universe” (p. 23). Smolin also introduces a second principle – “Every
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Every quantity in a cosmological theory that is formally an observable should in fact
be measurable by some observer inside the universe. (Smolin 2000, p. 3)

Except in unusual cases such as a spacetime with compact spatial sections, an observer “inside”

the spacetime will see a finite region, from which it is impossible to measure a global property (as

I will discuss in more detail in section 5.3). Qualms such as these about whether global property

ascriptions are compatible with a broadly empiricist methodology should come as no surprise.12

What is surprising, however, is that in GTR a leap to the global is neccessary to define several

fundamental quantities and to characterize the causal structure of spacetime. Below I will briefly

review two cases that illustrate what is gained by “going global” in general relativity.

One of the remarkable shifts in moving from special to general relativity is the loss of a

straightforward local definition of energy and its associated conservation law. (I have relegated a

slightly more detailed discussion of this topic to Appendix A.6.) Consider, for example, a binary

pulsar releasing gravitational waves as the pulsars’ orbits shrink. Intuitively the system is losing

gravitational energy, which is carried off by gravitational waves, and one might expect conser-

vation laws similar to those in classical or special relativistic physics to bolster these intuitions.

However, in GTR a gap opens up between integral and differential formulations of conservation

laws. Differential conservation laws guarantee that energy flows continuously through individ-

ual spacetime points. In special relativity the background inertial structure can be used to turn

a differential law into an integral conservation law, which describes the flow of energy through

finite regions. Integral conservation laws underwrite the intuition appealed to above, namely

formal mathematical object should be constructible in a finite amount of time by a computer which is a
subsytem of the actual universe.” Unfortunately Smolin does not give a more detailed formulation of the
principle, and it is not clear to me that one can formulate a criterion of constructibility that draws the line
where Smolin does: with much of modern mathematics qualifying as acceptable, but with constructions
of the configuration space for some systems beyond the pale.

12Sklar (2000, pp. 24-32) sees a “retreat to the local” in both Einstein’s formulation of GTR and the
development of the local algebraic formulation of quantum field theory.
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that the gravitational energy lost by the binary pulsar is carried away by gravitational radiation.

Although GTR incorporates a differential conservation law, ∇a
Tab = 0, this can only be turned

into an integral conservation law in stationary solutions, a special class of solutions possessing

a time translation symmetry. This failure reflects the fundamental difference between gravita-

tional energy and the energy-momentum carried by matter fields: the stress-energy tensor for the

latter gives a fully covariant description of the energetic quantities, but the equivalence principle

guarantees that locally one can always choose coordinates to “transform away” the gravitational

field.13

A definition of energy can be recovered globally for some spacetimes; intuitively, “far

away” from the binary pulsars and the complicated geometry they produce, the spacetime ap-

proaches Minkowski spacetime, which possesses the necessary symmetries to recover an integral

conservation law. Since the early 60s physicists have defined mass, energy, and momentum in

terms of the asymptotic structure for such asymptotically flat spacetimes. More recently interest

has also focused on quasilocal energy, which is the energy associated with a compact two-surface

(see Appendix A.6). The global approach has led to a number of important theorems in classical

general relativity, such as the positive mass theorem (i.e., that isolated gravitational systems have

non-negative total energy) and arguments that gravitational waves extract energy from radiating

systems (see, e.g. Wald 1984, §11.2).14

13Standard textbook treatments of GTR often introduce tab, a quantity representing the stress-energy
tensor of the gravitational field, but this quantity differs from Tab in that it is only a (coordinate-dependent)
“pseudo-tensor.”

14Hoefer (2000) argues that the lack of a local definition of energy and its conservation law blocks
a substantivalist move: the substantivalist cannot criticize the relationist’s apparent inability to attribute
energy and momentum to empty spacetime, since she cannot herself give suitable definitions of these
quantities. Whether or not this is actually a good argument, unlike Hoefer I think that existing definitions
of quasi-local and global energy do provide sufficient grounds for the substantivalist. In the case of the
binary pulsar, the global definitions do license claims regarding the energy carried away by gravitational
radiation, which I would argue is all the substantivalist needs.
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A second case more clearly illustrates the importance of global properties of spacetime in

general relativity. As discussed in more detail in Chapter 2, starting in the 60s relativists devel-

oped a number of new tools to study spacetime singularities and determine whether they occur

in generic spacetimes or are an artifact of strong symmetry assumptions. Even defining what one

means by a “spacetime singularity” has turned out to be an incredibly intricate conceptual and

technical issue that has yet to be fully resolved.15 I will focus on one aspect of these difficultes,

namely the question of whether singularities can be analyzed locally as a property of a specific

spacetime region.

Physicists have widely adopted the view that incomplete geodesics signal the presence

of a singularity. The path from the intuitive notion of a singularity as a “blow up” of some field

quantities to their definition in terms of geodesic incompleteness runs roughly as follows. In clas-

sical and special relativistic physics, one can meaningfully speak of singularities of a solution to

the appropriate field equations as occuring at a particular point—if, for example, field quantities

increase without bound on curves approaching the point. In GTR, one can construct a number

of scalar quantities from the Riemann curvature tensor and use the behavior of these quantities

as a signal of singular behavior. In the classical case singular behavior can be located against the

fixed background spacetime, but since we are interested in singularities of the gravitational field

itself in GTR, the “blow-up” of the curvature invariants cannot be directly used to “locate” the

singular points. One typically assumes that spacetime is modeled by a differentiable manifold

M equipped with a metric gab defined and differentiable everywhere on the manifold; ex hypoth-

esi there are no singular points in M . One might still hope to use bad behavior on the part of

the curvature invariants as a criterion for spacetime pathology. But this proposal, even when the

15Earman (1995), Chapter 2 gives the most comprehensive discussion of these issues; cf. Curiel (1999).
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details have been filled in, faces a number of objections (see, e.g., Wald 1984; Earman 1995, for

discussion). The most telling is that this criterion fails to capture a broad class of singular space-

times in which an observer moving along a geodesic does not encounter unbounded increase of

curvature invariants or other pathologies, yet is still “snuffed out of existence” within a finite

proper time.16 Identifying singularities via geodesic incompleteness captures these cases, and

perhaps more importantly this identification proved to be fruitful: the seminal singularity theo-

rems of Penrose, Hawking, and Geroch demonstrate that geodesic completeness is incompatible

with a number of other plausible, physically motivated assumptions.

Intuitively an incomplete geodesic corresponds to a “missing point”; spacetime unnatu-

rally runs out before reaching it. This intuition can be made precise for a manifold M equipped

with a Riemannian metric, a non-degenerate, symmetric tensor hab that is positive definite. A

compact manifold includes all the points that it possibly can, in the sense that, roughly speaking,

it contains all the limit points of sequences in the set and it is “small” in an appropriate sense.17

For a space with a Reimannian metric there is a clear link between geodesic incompleteness and

“missing points” provided by the notion of a Cauchy sequence. A Cauchy sequence is a set of

points pi such that for any given positive ε, ∃I(∀j, k > I : d(pj , pk) < ε), where d is the distance

function obtained from hab. If every Cauchy sequence converges to some p ∈ M , the space is

Cauchy complete, and also compact; moreover, for the Riemannian case a theorem guarantees

that a Cauchy incomplete space has incomplete geodesics. Missing points can be naturally added

to the space via a “boundary construction,” provided by an isometric imbedding of the Cauchy

16See Wald (1984, p. 214) for a clear example, a “conical singularity” constructed from a wedge in
Minkowski spacetime such that Rabcd = 0 everywhere even though curves terminating on the “vertex” of
the cone are incomplete.

17More precisely, a topological space is compact iff every collection of open sets whose union coincides
with the space itself has a finite subcollection that also coincides with the space. See, e.g., Geroch (1985),
for definitions and for a clear discussion of compactness (in §30).
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incomplete space into a complete space. The boundary points in the complete space correspond

to equivalence classes of non-convergent Cauchy sequences in the original space that (roughly

speaking) approach the boundary point.

This nice correspondence between incomplete geodesics and “missing points” breaks

down for a pseudo-Reimannian metric (as in GTR), since zero-length null curves confound any

attempt to define a positive distance function (and Cauchy sequences). In the spacetime case,

an incomplete geodesic is a curve that is inextendible in one direction with finite affine length.18

Misner (1963)’s “counter-example to almost everything” nicely illustrates that the connection

between geodesic completeness and compactness doesn’t carry over to relativistic spacetimes:

the general-purpose counter-example is a compact solution that nonetheless contains incomplete

geodesics. One might still try to introduce boundary points by analogy with the Riemannian

case, as equivalence classes of incomplete geodesics (see Appendix A.4 for a brief discussion

and references). The appeal of such boundary constructions is that they would allow for “local”

analysis of singular structure, similar to the local analysis of isolated systems achieved by the

conformal completions of asymptotically flat spacetimes. There are a wide variety of different

boundary point constructions (a-boundaries, b-boundaries, and g-boundaries, to name a few),

relying on different definitions of incompleteness and in some cases (such as the a-boundary of

Scott and Szekeres 1994) substantial new formalism.

18“Affine length” is a generalization of elapsed proper time to include null and spacelike geodesics;
an affine parametrization s of a curve is one such that u

a
= ( ∂

∂s )
a satisfies the geodesic equation,

u
a∇au

b
= 0. The limit to geodesics is motivated by examples such as Born-accelerated motion in

Minkowski spacetime: the curve for such motion has finite proper time, but it would be ridiculous to
brand Minkowski spacetime singular as a consequence. The restriction to geodesics can be eased by intro-
ducing “generalized affine length” and the corresponding notion of “b-completeness”; see, e.g., Hawking
and Ellis (1973, pp. 258-261) for further discussion. A curve γ(s) is inextendible iff it does not possess
an endpoint, a point p such that for every neighborhood O of p there exists a parameter value s0 such that
the image of γ(s) in M remains in O for all s > s0.
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These boundary completions are the closest one comes to a local characterization of

spacetime singularities. However, they all have a number of counterintuitive consequences for

some of the cases to which they have been applied. For example, Schmidt’s b-boundary for

the FLRW models represents both the initial and final singularities as a single point that is not

Hausdorff separated from any point in M (see Clarke 1993, pp. 40-45). Geroch et al. (1982)

conclude a discussion of similar counterintuitive consequences with the following remark: “Per-

haps the localization of singular behavior will go the way of ‘simultaneity’ and ‘gravitational

force’.” Even a retreat to identifying singularities with curvature blow-up does not preserve a

“local” characterization of singularities: whether a region contains curvature blow-ups depends

upon which curve one considers.19 Following Geroch et al. (1982)’s advice, we should con-

strue “singular” as an adjective characterizing the global structure of a spacetime rather than as

a property of a particular region.

Claims about causal “good behavior” of spacetimes are also characteristically global.

Specifying the causal structure of spacetimes precisely is one of the crucial components of the

singularity theorems. There are a number of causality conditions that relativistic spacetimes

can satisfy, which can be roughly characterized as specifying the extent to which various causal

features characteristic of Minkowksi spacetime hold globally (see Appendix A.4). For example,

a globally hyperbolic spacetime possesses a Cauchy surface, a spacelike surface Σ intersected

exactly once by every inextendible null or timelike curve. This is properly understood as a

global property of the entire spacetime; although submanifolds of a given spacetime may be

19See, in particular Hawking and Ellis (1973), pp. 290-292 for a brief discussion; this point is also
mentioned by Curiel (1999).
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compatible or incompatible with global hyperbolicity, it cannot be directly treated as a property

of local regions which is then “added up” to deliver a global property.

5.3 The Cosmological Principle

The status of the CP has been a subject of ongoing debate since its formulation in the

early days of relativistic cosmology. The content of the principle is no longer the focus of active

debate: it requires that a cosmological model is homogeneous and isotropic (see §1.2 and Ap-

pendix A.2).20 But assessments of the CP run the gamut, from the position that it qualifies as an

a priori truth to Ellis’s characterization of it as an “unverifiable” principle. Before turning to this

question, in 5.3.1 I characterize the CP as the strongest of a number of ampliative principles that

make local to global inferences possible. In light of these results, I will argue in 5.3.2 that the CP

and similar weaker principles play the role of a general principle supporting eliminative induc-

tion. I will further argue that unlike other inductive generalizations in physics, surprisingly little

is gained by taking on the additional epistemic risk associated with such ampliative principles.

5.3.1 Underdetermination

The CP puts stringent limits on the space of allowed cosmological models, and as a con-

sequence reduces the threat of theoretical underdetermination. In cosmology this threat can be

precisely formulated; it results from a combination of two features of general relativity. First,

the field equations of relativity specify a local relation between the various tensors that appear in

EFE, but this local relation is compatible with a wide variety of global structures. Second, due

20The CP is sometimes taken to require only spatial homogeneity (with isotropy presumably guaran-
teed by CMBR observations), and it is also sometimes confused with the weaker Copernican principle
introduced below. These differences in usage do not reflect deep disagreements, although there certainly
were important differences among early formulations of the principle.
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to the finite maximum signal speed, an observer taken to be located at a point p ∈ M is in causal

contact with only the region of spacetime marked out by the causal past J
−
(p).21 The physical

state at points outside of J
−
(p) is not fixed by observations on J

−
(p) in conjunction with the

laws of physics (modulo a few caveats, discussed in section 6.2). Even fully specifying the state

on J
−
(p) places few constraints on the global features of spacetime, in the sense that it can

be embedded in a spacetime M
′
, g

′
ab

with different global features than the original spacetime

M, gab. This is the idea behind Glymour’s definition of “observational indinstinguishability”

(OI): if I
−
(p) can be embedded in M

′, our observer at p would have no observational grounds

to claim that she is in M, gab rather than its indistinguishable counterpart M
′
, g

′
ab

. Any global

features that are not invariant under the relation of OI cannot be observationally established by

our idealized observer at p. Thus the question of observationally establishing global features

of spacetime can be translated into a more precise “topological” question: what constraints are

imposed on M, gab by the requirement that a collection of sets I
−
(p) can be isometrically em-

bedded in it? Here I will focus on clarifying the scope of OI given different assumptions regard-

ing the space of allowed counterparts.22 At the lowest level—only imposing this “embedding”

requirement—very little can be said about the global structure of spacetime based on observa-

tions confined to J
−
(p). As we will see, adding stronger physical and symmetry constraints

leads to stronger local-to-global inferences (see Table 5.1).

21In Minkowski spacetime, this set is the past lobe of the light cone at p, including interior points
and the point p itself. In the discussion below I will shift to using I

−
(p), the chronological past (in

Minkowski space, the interior of the past lobe) for convenience, since these are always open sets. Nothing
is lost since J

−
(r) is a subset of I

−
(p) if r ∈ I

−
(p), except in the case of maximal timelike curves with

future endpoints. See Appendix A.4 for a brief review of the relevant definitions.
22My approach here is also informed by the so-called “observational cosmology” program pursued by

Ellis, Stoeger, and various collaborators, with the stated aim of understanding to what extent observational
evidence can or cannot justify the widely accepted FLRW models. See Matravers et al. (1995) for a recent
update on some results of this program.
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Table 5.1. Hierarchy of Constraints

Constraint Scope of Underdetermination

Topological
Embedding of J

−
(p) sets Global structure underdetermined

Physical
Stipulated form for Tab, initial data Case by case “no go” results

Symmetry
(Almost) Isotropy & Homogeneity Determine best fit (Almost) FLRW model

Here I will not consider a more ambitious program that would aim to eliminate rival cos-

mological theories in favor of relativistic cosmology. Thorne, Will and others have explored the

space of possible gravitational theories that satisfy several general requirements, and have con-

cluded that observations can be used to rule out large sections of the space of possible alternative

theories (see Will 2001, for a recent review). But the application of GTR to cosmology extends

far beyond the range of the solar system-scale tests used in this eliminative project. In addition,

applying gravitational theory at larger scales leads to the dark matter problem: gravitational mea-

sures of mass-energy density give substantially higher estimates than other observations.23 The

typical response has been to exploit the flexibility of auxiliary assumptions regarding the matter

distribution. GTR by itself places few constraints on the source term Tab, leaving cosmologists

23I have benefited from discussions with Bill Vanderburgh regarding these issues; see Vanderburgh
(2001). It is worth noting that the “dark matter” problem has two variants which differ in scale and in the
nature of attempted solutions: first, a discrepancy between different mass measures applied to galaxies
and clusters of galaxies—Vanderburgh calls this the “dynamical dark matter problem,” which has been
“solved” via the introduction of various dark matter candidates. There is also a “cosmological” dark
matter problem, indicated by the (much greater) discrepancy between the value Ω = 1 preferred by many
cosmologists and the total contribution of baryonic matter to Ω (including the dark matter needed to
solve the first problem); currently the most popular solution to this problem is to introduce “dark energy”
due to a new fundamental scalar field distinct from the inflaton. The study of galaxies relies entirely on
Newtonian gravitational theory, and thus the conflict with GTR is indirect; one has to assume that GTR
reproduces Newtonian gravitational theory in the weak-field, low-velocity limit for a mass distribution
like that of a galaxy.
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with the option of avoiding the discrepancy by introducing new source terms (such as that for

“quintessence” and/or various dark matter candidates) without modifying gravitational theory.

Contrast this case with the need to modify Newtonian gravitational theory based on observa-

tions of the solar system: Seeliger’s zodiacal dust cloud and Dicke’s solar oblateness were both

introduced as ways to account for Mercury’s small anomalous perihelion motion within Newto-

nian gravitational theory. Evidence regarding the solar system is rich enough to cast doubt on

these proposed modifications of the mass distribution without begging any questions regarding

the status of Newtonian gravitation. We clearly lack similarly robust, independent evidential

constraints on the matter distribution in galaxies. However, there is enough discomfort at intro-

ducing otherwise undetected dark matter to motivate the development of alternative theories of

gravitation that resolve the mass discrepancy without new types of matter (see, e.g., Sanders and

McGaugh 2002; Mannheim 2000).24 These theories have been extended to the cosmological

regime, and their proponents have been able to recover several features of standard big bang

cosmology. Considering these alternatives in detail would take me too far afield, and here I will

focus on assessing the difficulty in a choosing a particular model on the assumption that GTR

applies.

The modest goal of pinning down the geometry of J
−
(p) observationally can be realized,

at least for “idealized” observers (as Ellis 1980 describes with remarkable clarity). The relevant

evidence comes from two sources: the radiation emitted by distant objects reaching us along

24As far as I know, no version of MOdified Newtonian Dynamics (MOND), originally introduced by
Milgrom and developed recently by McGaugh, has been formulated that would pass the first test in Thorne
and Will’s program: MOND is a modification of Newtonian gravitation in the low acceleration regime,
and does not treat the gravitational field as a tensor field satisfying generally covariant field equations (as
Thorne and Will require). In Mannheim’s theory, conformal symmetry is imposed within a metric theory,
in effect replacing the Ricci scalar in the Einstein-Hilbert action with a “Weyl scalar” constructed from
the (conformal) Weyl curvature tensor, and also treating the gravitational constant G as a dimensionless
coupling constant.
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our null cone, and evidence, such as geophysical data, gathered from along our world line, so to

speak. Considering only the former, suppose that astronomers somehow have full access to ideal

observational evidence: comprehensive data on a set of “standard objects” scattered throughout

the universe, with known intrinsic size, shape, mass and luminosity. With these data in hand

one could study the distortion or focusing effects of the standard objects as well as their proper

motion. Suppose that observers report no distortion or focusing effects and no proper motions

— could they then conclude that the observable universe is isotropic around the observer? Not

without assuming some background dynamics, such as EFE with a particular equation of state.

But coupled with fixed dynamics the ideal observational data are sufficient to determine the

spacetime geometry of the observer’s null cone, J
−
(p), as well as the matter distribution and

its velocity.25 Thus in principle one could observationally establish isotropy; in practice, the

small observed temperature variations of the CMBR (once the dipole moment corresponding

to our proper motion is subtracted) provide the best evidence for isotropy. Numerous practi-

cal limitations on astronomical observations make it extremely difficult to actually measure the

various quantities included in the ideal data set. The idealization appealed to above sidesteps

one of the most pressing sources of systematic error in interpreting observations: differentiating

evolutionary effects on the objects used as “standard candles” (such as galaxies or supernovae)

from cosmological effects. In any case, the difficulties with actually determining the geometry

of J
−
(p) using real astronomical data differ in kind from the limitations on claims regarding

global structure discussed below.

25As Ellis notes, the metric quantities that determine how the null cone is embedded in the spacetime
cannot be directly measured without using the dynamical equations, but the distortion and focusing effects
of standard objects can be used to directly measure the intrinsic geometry of the null cone.



168

The underdetermination at issue differs from two other types of underdetermination dis-

cussed in the philosophy of science literature. Absolute velocity in Newtonian mechanics is one

of the stock examples of underdetermination in the literature (see, for example, van Fraassen

1980, pp. 44-47, and Laudan and Leplin 1991, pp. 457-58). The background theory of New-

tonian mechanics rules out the possibility of gathering evidence that could decide between dif-

ferent models embodying different choices of a preferred inertial frame of substantival space.

Since absolute velocity is defined as the velocity with respect to the preferred inertial frame, the

distinction between models with different absolute velocities can be drawn only at the level of

theory. On the other hand, in the cosmological case a given cosmological model and an indis-

tinguishable counterpart do in fact differ in observational content, and describe quite different

overall spacetime structures (cf. Bain 1998, §3.1). OI also differs from indistinguishability that

arises from changing how objects or events are identified (as originally suggested by Reichen-

bach 1958). As an example, consider Minkowski spacetime in which all physical fields return

to the same state periodically, on the time slices t = 0, k, 2k, ....26 This spacetime is “indistin-

guishable” from Minkowski spacetime which is “rolled up” along the time axis, such that the

periodic return to the same physical state is actually a return to the numerically identical t = 0

slice. A long-lived astronaut traveling along a future-directed timelike curve will repeatedly

cross these identical slices in either spacetime, but she can either interpret the dull repetitiveness

of her spacetime as evidence for periodic behavior in an open time or as a sign of cyclic time.27

This interpretative move (treating the time slice as a single slice or as repeated copies of the same

26See also Glymour (1972), as well as Weingard (1990)’s brief critical response to Harr é (1986, pp.
140-41); Harr é seems to be taking his cue from Reichenbach, although this debt is not acknowledged.

27This example only works with the strong assumption that the astronaut’s mental states supervene on
the physical states, so that the astronaut will have exactly the same mental state each time she crosses the
slice. So although she may be aware of the dull repetitiveness, the astronaut cannot count the number of
times she has returned to the same state.
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state) is left open even for observed regions of spacetime. By way of contrast, OI relies on the

existence of a terra incognita hidden beyond observational horizons. A suprisingly wide variety

of spacetimes have OI counterparts, whereas the type of indistinguishability described above

does not generalize to more interesting cases.28 The case of OI spacetimes cannot be given a

conventionalist gloss: OI counterparts describe different spacetimes, which happen to agree in

certain patches—without any trickery involving the identification of events.

Turning now to the definition of OI, the intuitive requirement that all observers’ past light

cones are compatible with two different spacetimes can be formalized as follows (Malament

1977, p. 68):29

Weak Observational Indistinguishability: Cosmological models 〈M, gab, O1, ..., On〉
and 〈M ′

, g
′
ab

, O
′
1
, ..., O

′
n
〉 are WOI if for every p ∈ M there is a p

′ ∈ M
′ such

that: (i) there exists an isometry φ mapping I
−
(p) into I

−
(p

′
), (ii) φ

∗
Oi = O

′
i

for
i = 1, ..., n.

The adjective “weak” distinguishes this formulation from Glymour (1972, 1977)’s original,

which was cast in terms of inextendible timelike curves and stipulated that the relation is sym-

metric. I agree with Malament’s argument that these features of the original definition fail to

capture the epistemic situation of observers in cosmology. First, if observers are idealized as in-

extendible timelike curves, whether or not a given spacetime has OI counterparts depends upon

28In the example above the “unrolled” Minkowski space is the covering space of the rolled up version.
The covering space is obtained by “unwinding” all noncontractible curves (see, e.g., Geroch 1967). The
example also requires that the fields populating the spacetime return to the same state periodically, which
is difficult to arrange in more reasonable models (see Tipler 1980, for a “no-recurrence” theorem for
spatially closed models).

29My definition differs slightly from that given by Malament, in that I am requiring that the source
fields (rather than only the Tab) are diffeomorphic in the indistinguishable counterparts (cf. Malament
1977, pp. 74-76). Although Tab inherits the symmetries of the metric, the source fields O1, ..., On do
not necessarily share the symmetries (see, e.g., Tariq and Tupper 1992, for discussion of cases in which
the source fields do not inherit symmetries of the metric). The source fields are tensor fields defined
everywhere on M , such as the Maxwell tensor Fab, which satisfy the appropriate field equations.
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the nature of future infinity. Second, surely the epistemic situation of an observer in M does not

depend on that of observers in M
′—undercutting the symmetry requirement.30

The familiar de Sitter solution provides a nice illustration of a spacetime with indistin-

guishable counterparts (following Malament 1977): even observers idealized as inextendible

timelike curves in de Sitter space only see a finite “strip” of the full spacetime, and the initial

spacetime is indistinguishable from other spacetimes that differ beyond this strip. The de Sit-

ter solution can be visualized in a reduced model (suppressing two spatial dimensions) as a one

sheet hyperboloid H imbedded in a flat three-dimensional space (see figure 5.1). Future and past

timelike infinity are spacelike surfaces in the de Sitter spacetime (see A.4). A group of test parti-

cles moving along geodesics in de Sitter space rapidly separate with the expansion of the space.

The horizons resulting from this expansion can be easily visualized in the two-dimensional cov-

ering space of de Sitter space, the t, x plane with the metric ds
2

= dt
2 − (cosh

2
t)dx

2. Since

the light cones narrow as |t| → ∞, every observer can see only a vertical strip of the spactime

2π wide in the x coordinate of this metric. This strip of the covering space is OI from the two

dimensional reduced model of de Sitter space.

A second example illustrates that global properties may vary between WOI counterparts.

Consider Minkowski spacetime with a closed ball O surgically removed. The pre-surgery ver-

sion of Minkowski spacetime R
4
, ηab is WOI from the mutilated version, since the chronological

30This definition of WOI can be further modified by taking into account the possibility that event hori-
zons may hide some regions of spacetime. The current definition assumes a “democracy of observers”: all
points in the manifold are considered in the construction of an observational counterpart. However, Pen-
rose’s cosmic censorship conjecture (see, e.g., Penrose 1979) suggests a division between two different
classes of observers: those outside black hole event horizons protected from singularities (and possibly
other causality violations) by the Cosmic Censor, and the poor infalling observers who may sneak a peak
at a naked singularity. If the definition of OI is restricted to the former, they may remain ignorant of
even the failure of various causality conditions. Whether this is in fact the case depends on the black
hole uniqueness theorems, which suggest that distant observers can reliably distinguish different black
hole spacetimes without receiving word from the infalling observers. Clarifying this weaker notion of
observability requires a detailed study of black hole spacetimes, something I will not pursue further here.
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I   (p)

I   (p)

p

−

−

Fig. 5.1 The reduced model of de Sitter spacetime, a hyperboloid embedded in flat space, illustrating
the chronological past I

−
(p) and the “collapsing” light cones as one moves away from the neck of the

hyperboloid. See Schrödinger (1957) for a clear description of the de Sitter solution.

past of any observer in Minkowski spacetime can be embedded “below” the mutilation. Symme-

try fails, since any observer in the mutilated spacetime (R4 −O, ηab) whose causal past included

the removed set would be well aware that she was not in Minkwoski spacetime anymore. This

example illustrates that the existence of a Cauchy surface is not invariant under the relation of

WOI (there are Cauchy surfaces in Minkowski spacetime, but not in the mutilated counterpart).

More generally, the WOI counterpart to a given spacetime can be visualized as the sets I
−
(pi)

hung along a “clothesline” with space-time filler in between.31 Here we are not concerned with

whether the WOI counterpart is actually a sensible cosmological model in its own right; the

space-time filler is allowed to vary arbitrarily between the I
−
(p) hung on the clothesline, as

31A proof due to Geroch (1968, pp. 1743-44) guarantees that one can always find a countable sequence
{pi} such that the union of their chronological past covers M , i.e. M =

⋃

pi

{I−(pi)}.
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p

q

I  (p)

I  (q)

space

time

t = constant

O

−

−

Fig. 5.2 “Mutilated” Minkowski spacetime (the set O excised), which is WOI from standard Minkowski
spacetime. An observer at p can detect the causality violations associated with the excised region, but an
observer at q cannot.

long as continuity holds on the boundaries. Malament (1977) presents of series of brilliant con-

structions to illustrate that only the failure of various causality conditions necessarily holds in

WOI counterparts (see, in particular, the table on p. 71).32 As Malament emphasizes, an ob-

server may know conclusively that one of the causality conditions is violated, but no observers

will ever be able to establish conclusively that causality conditions hold.

A natural objection to this line of thought is that we should be concerned with whether

the constructed indistinguishable counterparts are sensible cosmological models in their own

right. While these indistinguishable counterparts are solutions of the EFE, they are constructed

32I share Malament’s intuition that the only spacetimes without a WOI counterpart are totally vicious
(i.e., for ∀p ∈ M, p ∈ I

−
(p)), although I have not been able to prove a theorem to this effect.
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Fig. 5.3 This figure contrasts the standard big bang model (a) and Ellis et al. (1978)’s model (b); in the
latter, a cylindrical timelike singularity surrounds an observer O located near the axis of symmetry, and
the constant time surface tD from which the CMBR is emitted in the standard model is replaced with a
surface rD at fixed distance from O (figure from Börner 1993, p. 130).

by stringing together “copies” of I
−
(p) sets and generally require a bizarre distribution of mat-

ter. This objection suggests that counterparts should be subject to a stronger constraint, namely

that they correspond to solutions of the EFE that can be derived from physically motivated as-

sumptions about the matter content.

Ellis et al. (1978)’s example of an indistinguishable counterpart to the observed universe

illustrates the difficulties with satisfying such a stronger constraint. Their model incorporates

isotropy for a preferred class of observers, but abandons homogeneity and the usual conception

of how sources evolve. In this static, spherically symmetric model, temporal evolution (of, e.g.,

the matter density or various astronomical objects) in the standard FLRW models is replaced

with spatial variation symmetric around a preferred axis (see 5.3). Unlike the timelike big bang
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singularity of the FLRW models, this model incorporates a singularity that “surrounds” the cen-

tral region at a finite distance (all spacelike radial geodesics intersect the singularity). Ellis et al.

(1978) show that such a model can accomodate several observational constraints, at least for an

observer whose worldline is sufficiently close to the axis of symmetry. They counter the ob-

vious objection that it is unreasonable to expect our location to be close to the “center of the

universe” with an anthropic argument (p. 447): in such a model, only the central region is (lit-

erally) cool enough for observers. However, there is a more substantial objection: it turns out to

be quite difficult to match the observational constraints on the magnitude-redshift relation given

EFE with a perfect fluid source. Roughly, the symmetries of the model place very tight con-

straints on solutions to the field equations, and of the six possible solutions none fit the observed

magnitude-redshift relation without unnatural modifications (see Ellis et al. 1978, §6 and §7).33

But this is precisely the point of the exercise: the model is suspect not because it violates spatial

homogeneity, but rather because of the difficulty in satisfying both the EFE for a reasonable

equation of state and observational constraints.

The major difficulty with replacing the definition of WOI given above with a physically

motivated constraint along these lines also appears in other areas, such as attempts to prove

33To be more precise, Ellis et al. (1978) note that the for the solution to remain static the gradient in the
gravitational potential as one moves out along the radius must be matched by a pressure gradient. But this
implies that the present era is radiation dominated in the alternative model (rather than matter dominated,
as in the standard models), since “dust” uncoupled to radiation does not satisfy the equation of hydrostatic
support. Hence the alternative model uses an equation of state with p = ρ/3, with a non-zero Λ thrown in
for an added degree of freedom. They conclude that that if ρ > 0 (satisfying the strong energy condition),
there is no choice of the parameters of the theory that fits the observed magnitude - redshift relation. There
are a few ways to avoid this conclusion, such as considering much more complicated equations of state
or alternative gravitational theories, but Ellis et al. (1978) dismiss the alternatives as not “immediately
compelling.”
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Penrose’s cosmic censorship conjecture: what exactly should be required of a “physically rea-

sonable” solution of the field equations?34 Requiring that the source term Tab satisfies various

energy conditions will not do in this case, since a clothesline-constructed counterpart satisfies

any energy conditions satisfied in the original spacetime; other more restrictive constraints on

Tab fail for the same reason. Ignorance of the space of solutions of the EFE also makes it dif-

ficult to imagine how one could formulate a “naturalness” or “simplicity” requirement in terms

of initial data specified on some Cauchy surface Σ that would rule out WOI counterparts. The

WOI counterparts certainly look like Rube Goldberg devices rigged up to be indistinguishable

from a given spacetime. However, exact solutions with high symmetry are also “unnatural,” and

it is hard to see how to formulate a criterion that would rule out WOI constructions but not so-

lutions such as the FLRW models. Without an entirely general formulation, we have instead the

piecemeal approach of Ellis et al. (1978): construct a model without spatial homogeneity and a

given equation of state, then see whether it can accomdate various observational results. Failure

to construct a workable model may reflect lack of imagination rather than a fundamental feature

of GTR, and so this only provides slight evidence for the claim that the FLRW models are the

only physically reasonable models incorporating isotropy.

Adding information from multiple observers reduces the freedom in constructing indis-

tinguishable counterparts. Spatial homogeneity is the strongest form of this requirement: it

stipulates exact symmetry between every fundamental observer. More precisely, homogeneity

holds if there are isometries of the spatial metric on each Σ—three-surfaces orthogonal to the

tangent vectors of the fundamental observers’ worldlines—that carry any point on the surface

34See Earman (1995), Chapter 3 for a comprehensive discussion of cosmic censorship and an extensive
list of references to the physics literature.
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into any other point. Suppose that we amend the definition of WOI to include the requirement

that homogeneity must hold in M, gab as well as M
′
, g

′
ab

. Pick a point p ∈ M such that p lies in

Σ, and choose an isometric imbedding map φ such that the point φ(p) is in M
′. If homogene-

ity holds, then M
′ must include an isometric “copy” Σ

′ of the entire Cauchy surface Σ along

with its entire causal past. Take ξ to be an isometry of the spatial metric defined on Σ, and ξ
′

an isometry on Σ
′. Since φ ◦ ξ(p) = ξ

′ ◦ φ(p), and any point q ∈ Σ can be reached via ξ, it

follows that Σ is isometric to Σ
′. Mapping points along an inextendible timelike curve from M

into M
′ eventually leads to an isometric copy of our original spacetime. If both cosmological

models are inextendible, there are no indistinguishable counterparts (up to isomorphism) under

this amended definition.35

Even a weaker requirement than the exact symmetry of spatial homogeneity reduces

the scope of indistinguishable counterparts. Exact isotropy around two or more distinct space-

time points entails homogeneity, and it is also true that (with appropriate qualifications) “near

isotropy” entails “near homogeneity.” The Copernican Principle (whether appropriately named

or not) is typically characterized as requiring that “our location is not distinguished.” Here I

will take the Copernican Principle to make the stronger requirement that, roughly put, no point

p ∈ M is distinguished from other points q by spacetime symmetries. Ellis et al. (1978)’s model

would fail to meet this requirement, since there are points distinguished by their proximity to

the axis of symmetry.36 The Ehlers-Geren-Sachs theorem (Ehlers et al. 1968) shows that if all

35An inextendible spacetime cannot be imbedded as a proper subset of another spacetime. This quali-
fication is needed to rule out spacetimes such as a “truncated” FLRW model, in which there is an end of
days—a “final” time slice at an arbitrary cosmic time t end. Such a model would be WOI (in the amended
sense) from its extension, in which time continues past tend.

36What is lacking here is a precise way of stating that there should be an “approximate symmetry”
obtaining between different fundamental observers separated by some length scale L, in that they see a
distribution of galaxies and fluctuations of temperature in the CMBR that differ only due to the random
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fundamental observers in an expanding model find that freely propagating background radiation

is exactly isotropic, then their spacetime is an FLRW model.37 Recent work has clarified the

extent to which this result depends on the various exact claims made in the antecedent. The

fundamental observers do not need to measure exact isotropy for a version of the theorem to go

through: Stoeger et al. (1995) have further shown that almost isotropic CMBR measurements

imply that the spacetime is an almost FLRW model.38 There are, however, counterexamples

showing that the theorem does not generalize in other respects. Given the assumption that the

matter content can be characterized as pressureless dust completely decoupled from background

radiation, the fundamental observers travel along geodesics. Clarkson and Barrett (1999) show

that non-geodesic observers can observe an isotropic radiation field in a class of inhomogeneous

solutions. In addition, observational constraints confined to a finite time interval may not rule

out more general models which approximate the FLRW models during that interval but differ at

other times (Wainwright and Ellis 1997).

5.3.2 Status of the CP

The previous section clarified the extent to which claims regarding global structure re-

quire an appeal to a general principle of uniformity. Bold global extrapolations certainly may

fail: if inflation occurred, for example, then the CP would only apply to the interior of post-

inflationary “bubbles” rather than to the universe on the largerst possible scales. In practice

processes generating them. See Stoeger et al. (1987) for a proposed definition of “statistical homogeneity”
along these lines, defined with respect to a given foliation.

37“Freely propagating” means that the radiation is decoupled from the matter; the stress energy tensor
can be written as two non-interacting components, one for the dust-like matter and another representing
the background radiation.

38Wainwright and Ellis (1997) introduce various dimensionless parameters defined in terms of the
shear, vorticity, and Weyl tensor to measure departures from the exact FLRW models; a spacetime is
almost FLRW if all such parameters are << 1 (see, in particular, pp. 62-64).
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these principles have generally played the role of defining the space of possible models consid-

ered by observational cosmologists. This strategy is a familiar one in science, and it has been

dubbed (among other things) eliminative induction.39 In an eliminative induction very general

premisses delineate the scope of possible theories or hypotheses. The epistemic risk associ-

ated with an inductive argument is shifted entirely to these premisses; the deductive argument

to the conclusion that some subset of possible hypotheses is correct proceeds by ruling out the

competitors. Observational programs that aim to determine the “best cosmological model” only

stand a chance when the list of possible models has been trimmed down using the CP or a similar

principle. Of course this strategy shifts the epistemic risk from the inference to the principles

invoked in it, rather than eliminating that risk entirely. The advantage consists of replacing an

inductive generalization with a careful characterization of the “uniformity of nature” appealed

to in a particular context.

In comparison to other cases of inductive generalization, taking on the epistemic risk

associated with the CP is remarkably unproductive. Consider (again) a brief contrast with New-

tonian gravitation: the latter half of Book III of the Principia illustrates the potential payoff of

universal gravitation, as Newton gives preliminary accounts of the tides, the motion of the moon,

the shape of the earth, and so on. The inductive step (however it is characterized) to universal

gravity leads to a host of further empirical problems that present an opportunity to refine and

develop the theory, and indeed these problems spurred the development of celestial mechanics

throughout the eighteenth century. In the cosmological case, invoking the CP to make global

extrapolations does not lead into similarly rich empirical territory. These extrapolations may

39I thank John Norton for emphasizing the importance of eliminative induction to me in several discus-
sions; see his Norton (1994), for example.
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satisfy the urge to speculate about the overall global structure of the univers and its eventual fate,

but there are no immediate testable consequencs of accepting or rejecting the CP. This is not to

say that there are no issues of theoretical interest that depend on the truth of the CP: in particular,

the singularity theorems require assumptions regarding the global causal structure of spacetime.

5.4 The Indifference Principle

In slogan form, the indifference principle holds that we should prefer a theory that does

not require “special” initial conditions (or “special” parameter values). Momentarily we will

turn to the difficulties of making the slogan precise, but in any case there is no shortage of

sloganeers.40 In the Discourse on the Method Descartes stated a preference for indifference as

follows (Descartes 1985, pp. 132-34):

I therefore supposed that God now created, somewhere in imaginary spaces, enough
matter to compose such a world; that he variously and randomly agitated the dif-
ferent parts of this matter so as to form a chaos as confused as any the poets could
invent; and that he then did nothing but lend his regular concurrence to nature, leav-
ing it to act according to the laws he established. [...] So, even if in the beginning
God had given the world only the form of a chaos, provided that he established the
laws of nature and then lent his concurrence to enable nature to operate as it nor-
mally does, we may believe [...] that by this means alone all purely material things
could in the course of time have come to be just as we now see them.

Descartes’ hope that the new mechanics would render teleology unnecessary was as unfounded

as it was bold.41 Closer to hand, we find cosmologists displaying similar rationalistic leanings

(Sciama 1959, pp. 166-67):

40McMullin (1993) gives an insightful overview of the history of the idea from the Greeks to contem-
porary cosmology.

41Several of Descartes’ contemporaries (and later generations of natural theologians) reached exactly
the opposite conclusion. For example, Newton held that the action of Divine Providence (whose mys-
terious ways include the judicious use of comets) was needed to insure the stability of the solar system
(Kubrin 1967).
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[We must] find some way of eliminating the need for an initial condition to be
specified. Only then will the universe be subject to the rule of theory. ... This
provides us with a criterion so compelling that the theory of the universe which best
conforms us to it is almost certain to be right.

Sciama was discussing the steady state theory, and within a few short years he would admit that

observational accuracy provides an even more compelling criteria for theory evaluation. But his

target was clearly the big bang model, which apparently requires a highly specialized initial state

very different from Cartesian Chaos. Ironically, indifference was also accepted as an important

theoretical virtue by fans of the big bang model: Misner and later Guth hoped that any imprint

of an initial “chaotic” beginning could be erased by subsequent evolution. As we saw in Part I,

these lines of research have dominated early universe cosmology since the late 60s.

The great appeal of these ideas is that they resolve an apparent conflict between a widely

accepted assumption regarding the universe’s initial state and the observed universe. I will call

this assumption the “Creation Hypothesis” (CH): the initial state of the universe is “chosen at

random” from the space of physically possible models. Perhaps the Creator tossed a dart at the

Cosmic Dart Board representing cosmological models without aiming for anything in particular.

Even without a good understanding of the space of solutions to EFE or how one is chosen to

be “actualized,” it seems clear that one of the maximally symmetric FLRW models must be an

“improbable” or “finely-tuned” choice: for any reasonable choice of measure, these models are

presumably a measure-zero subset of solutions to EFE. (More precisely, models lacking symme-

try form a dense, open subset of the space of solutions to EFE; see Isenberg and Marsden 1982 .)

An “average” cosmological model lacks the global symmetries of the FLRW models, and instead

features bewildering inhomogeneities “as confused as any the poets could invent.” Furthermore,

dynamical evolution governed by the EFE appears to enhance initial inhomogeneities rather than
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suppress them. Thus CH immediately leads to a dramatic conflict with observations: the most

“probable” initial state develops into nothing like our universe.42

There have been three different responses to this apparent conflict (cf. Hartle 1986):

1. Dynamics – New dynamics is introduced to turn a “typical” initial state into the observed
universe, in the process (partially) erasing the imprint of the initial conditions. The appar-
ently “finely tuned” features are a consequence of these dynamics.

2. “Theories of initial conditions” – The assumption that the initial state is chosen randomly
from among the states allowed by classical GTR should be rejected, since the full theory
of quantum gravity may incorporate principles (in the form of global constraints) that trim
down the space of physically possible models.

3. Anthropic principle – The “special” features of the initial state are necessary preconditions
for our existence. As Collins and Hawking (1973) put it, “the answer to the question ‘why
is the universe isotropic?’ is ‘because we are here’ ” (p. 334).

I will turn to the anthropic principle in the next section. After discussing the first two responses,

I will argue in favor of a skeptical response. I will focus on two aspects of the set-up for the

apparent conflict. All the talk of probabilities above has been carried out at the level of rough

intuitions. In the following subsection, I will review serious obstacles to putting these intuitions

on firmer footing. Even granting for the moment that these probabilistic arguments make sense,

the perception of a conflict depends on an implicit assumption that the space of physically pos-

sible cosmological models should directly match the observed universe. But what exactly is the

problem with unrealized physical possibilities? Lawlike generalizations in other sciences, such

as biology, hold only in a subset of physically possible models, and do not define the space of

physically possible models. Commitment to the indifference principle reflects a demand that

cosmology should resemble the methodology of physics in seeking fundamental laws.

42Of course, given the probabilistic nature of the hypothesis there is not an outright conflict here, but
CH renders the observed history of the universe incredibly improbable.
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As we saw in part I, early universe cosmology has been dominated by attempts to imple-

ment the dynamical approach. Supplementing the standard big bang model with new dynamics

satisfies the indifference principle, since the theory no longer requires special initial conditions.

In slogan form the big bang model with new dynamics offers a more robust dynamical explana-

tion of the regularities at issue. Here a word of caution is in order: the suggestion that introducing

new dynamics eliminates dependence on initial conditions is false advertising. This point, first

spelled out by Collins and Stewart (1971) in response to Misner’s work, bears repeating since

it is often ignored. In the case of inflation, even if inflation occurs one can choose initial con-

ditions that lead to an arbitrarily non-uniform universe with any value of Ω, despite inflation’s

“preference” for a uniform universe with Ω = 1. Thus the advantage of new dynamics lies in

enlarging the range of initial conditions compatible with observations rather than eliminating

dependence on initial conditions.43 A second point will be familiar from the discussion of the

fine-tuning problems of new inflation in Chapter 4: current versions of inflation typically involve

a trade-off between fine-tuning of the initial conditions and fine-tuning of the dynamics (in the

form of specifying the potential of the inflaton field). Clarifying and assessing the demand for

robustness will be the focus of Chapter 6, but for the moment I will grant that introducing new

dynamics renders the observed universe “more probable” by enlarging the range of compatible

initial conditions.

Consider the following general argument in favor of introducing new dynamics. The

overall uniformity of the universe is one of its most striking and fundamental features. The

probabilistic arguments above indicate that classical general relativity only accomodates this

43Guth (1997b) acknowledges this point: “... I emphasize that NO theory of evolution is ever intended
to work for arbitrary initial conditions. ... In all cases, the most we can hope for is a theory of how the
present situation could have evolved from reasonable initial conditions” (pp. 240-241, emphasis in the
original).
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fundamental feature of our universe as a remarkably improbable, contingent feature of a par-

ticular model. Surely it would be more reasonable to assume that this feature directly reflects

the laws of nature, rather than some contingent, global constraint on the initial data? Perhaps

this odd fact is a significant hint of how the laws of quantum gravity (presuming such a theory

exists) differ from those of classical general relativity; namely, they insure that uniformity re-

sults from dynamical evolution for almost any initial state. The striking uniformity of the early

universe looks like a clear signpost guiding the way in formulating new fundamental theories

applicable to the early universe. This certainly seems more progressive than simply chalking up

the universe’s uniformity to special initial conditions.

But what is the force of this argument? Physicists undoubtedly focus on isolating the

deep structure of their theories in the drive to reformulate and improve them. But deciding

what should be caught in the web of necessary connections embodied in a physical theory is un-

doubtedly one of the most difficult tasks facing creative theorists. There are numerous examples

of regularities once thought to be deeply enmeshed with the laws of nature that subsequently

slipped through the netting: Kepler thought that the number and relative distances of the planets

and their moons was as closely related to the laws of nature as his harmonic law, Leibniz took

the common direction of orbital rotation of the planets to reflect a lawlike regularity accounted

for by the vortex theory, and it is fairly easy to produce other historical examples. Clearly we

need to avoid casting the net too broadly, without thereby curtailing the search for new ways of

catching observed regularities within physical theory.

Turning to a closely related issue that has been the focus of more philosophical dis-

cussion will help to clarify matters. The difference between the past and future is one of the
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most striking features of our universe.44 The Second Law of thermodynamics characterizes this

asymmetry in terms of the entropy: for a closed system, the change in entropy ∆S obeys the

following inequality: ∆S ≥ 0. This law implies that entropy does not decrease in transitions that

a closed system undergoes, and entropy reaches its maximum value for equilibrium states. Sys-

tems obeying the law evolve toward equilibrium states in the future, but they do not evolve from

equilibrium states in the past. Since Boltzmann’s first “derivation” of the infamous H-theorem,

a tremendous amount of effort has been devoted to understanding the status of the Second Law

with regard to classical (and quantum) statistical mechanics. Phenomenological thermodynam-

ics is usually taken to be reducible in some sense to statistical mechanics (see, in particular, Sklar

1993); suppose that the laws of thermodynamics are meant to be recovered as laws of statistical

mechanics.45 This assumption leads to a fundamental conflict due to two features of the laws of

classical statistical mechanics (clearly recognized by Boltzmann’s contemporaries, Zermelo and

Loschmidt): the laws of classical statistical mechanics are time reversal invariant, and the evolu-

tion of a closed system obeying these laws is quasi-periodic. Applying the indifference principle

to this case, we should conclude that the asymmetry of time should be directly reflected in the

laws of statistical mechanics, and join in the century-old hunt for new physics incorporating an

arrow of time.

There is an alternative to joining the hunt (as with many ideas in statistical physics, first

suggested by Boltzmann): the laws of statistical mechanics conjoined with the “past hypothesis”

(using Albert 2000’s terminology) are compatible with the Second Law. According to the past

44See, e.g., Sklar (1993); Albert (2000) for much more detailed discussions of these matters.
45This is not intended to be a minimal assumption required for an account of the reduction of ther-

modynamics to statistical mechanics. Indeed, this is a very strong requirement, and I am sympathetic to
Callender (2001)’s position that lowering the sights (by requiring only that statistical mechanics recovers
suitable analogues of thermodynamics laws) eases this confict.
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hypothesis, in the distant past the universe was in a low entropy state, but it will not return to a

low entropy state in the distant future.46 Due to this initial state, transitions towards equilibrium

are to be expected whereas those away from equilibrium are incredibly unlikely. To those hot

in pursuit of new physics, this resolution seems to have all the advantages of theft over honest

toil. It solves the conflict by fiat, without (as the standard complaint has it) really providing

a satisfactory explanation of the striking time asymmetry of observed phenomena. How could

a contingent matter of fact regarding the global distribution of matter and energy shortly after

the big bang serve as explanatory grounds for the fundamental asymmetry manifest in local

phenomenon? The advocate of adopting the past hypothesis has to bite the bullet and admit

that the cooling of my cup of coffee is, in some sense, explained by the universe’s initial low

entropy state. Those pursuing new physics expect us to share their feeling that this is inherently

unsatisfactory, and join in the demand for a better explanation.

Several cosmologists have made a move analogous to Boltzmann’s, in shifting focus

from local, dynamical laws to global features of the initial state. But unlike Boltzmann they

accept the argument that the universe’s uniformity must reflect the laws, and aim to develop a

“theory of initial conditions” that singles out a unique initial state. Uniformity (and perhaps

other properties) directly reflect the universe’s initial state rather than its subsequent evolution.

In other words, these theories propose that we “trim down” the Cosmic Dart Board to include,

say, only highly uniform initial states. Little wonder then that the “actualized” initial state is

compatible with what we observe!

46I am glossing over two points here. First, an advocate of this line of thought needs to relate the overall
low entropy boundary condition to the behavior of local systems; see Sklar (1993) for discussion. Second,
the “distant past” need not refer to an early time slice in an FLRW model, as I will assume below; for
example, Boltzmann thought of the initial low entropy conditions as resulting from a “local” fluctuation
away from equilibrium.
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Penrose (1979, 1989)’s suggestion that the initial state should have vanishing gravita-

tional entropy provides one example of this approach. There is no widely accepted definition of

gravitational entropy, but Penrose argues that the natural equilbrium state for matter is maximally

“clumpy” (consisting of black holes) since gravity enhances inhomogeneities. Thus the unifor-

mity of the early universe reflects incredibly low gravitational entropy, and it is no coincidence

that this supplies the low entropy initial state required by the past hypothesis. Penrose’s conjec-

ture is that the Weyl curvature tensor approaches zero as the initial singularity is approached; his

hypothesis is explicitly time asymmetric, in that the Weyl curvature increases as black holes are

approached.47 Imposing this constraint requires that the early universe approaches an FLRW so-

lution. This idea still has the status of an imaginative, “botanic” proposal—while it classifies the

nature of the initial singularity, it has not yet been derived from a theory of quantum gravity.48

Quantum cosmology provides another example of a “theory of initial conditions.” Re-

search in quantum cosmology has long had the stated goal of finding laws which uniquely de-

termine the initial quantum state of the universe. Hawking has claimed that “the no-boundary

proposal makes cosmology into a science, because one can predict the result of any observation”

without an ansatz for the initial conditions (Hawking and Penrose 1996, p. 86). The no-boundary

proposal is formulated using Euclidean techniques borrowed from the path integral formulation

47The Weyl tensor Cabcd is the trace-free part of the Riemann curvature tensor, and it represents the
spacetime curvature due to the gravitational field itself. The FLRW models (and other conformally flat
spacetimes) have vanishing Weyl curvature, which motivates the use of vanishing Weyl curvature as the
measure of uniformity. Goode et al. (1992) formulate this hypothesis in terms of the limiting behavior of
Cabcd in a conformal completion, which includes t = 0 as a spacelike hypersurface.

48The term is Hawking’s, but Penrose agrees that it applies to the Weyl curvature hypothesis; see
Hawking and Penrose (1996, p. 106).
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of QFT. The path integral for gravity coupled to a scalar field is given by:49

Z(M) =:

∫

dµ(gab)d(φ)exp(−SE [gab, φ]) (5.3)

The no boundary proposal then calculates the probability of a solution with an initial geometry

(Σ, hij) within the “range of values” O as
∫

O |Φ|2dµ(hij) where hij is the induced three metric

on the surface Σ, and φ0 is the field configuration of the scalar field. Φ(hij , φ0,Σ) is the “ground

state” wave function(al) defined as the sum of Z(M) ranging over compact Euclidean manifolds

(hence the name) with a unique boundary Σ. Hawking and Hartle (1983) argue that this prob-

ability should be interepreted as the probability that the universe appears from nothing with the

initial spatial geometry given by Σ, hij . It will perhaps come as no surprise that this flight into

the formalism takes several twists and turns that others have not followed, and substantial ques-

tions remain regarding the proper criteria for choosing an appropriate wave function and then

interpreting the chosen one. Vilenkin (1998) concludes a review of competing definitions on an

appropriately cautionary note:

... the reader should be aware that all three wave functions [proposed by Hawking
and Hartle, Linde, and Vilenkin] are far from being rigorously defined mathemat-
ical objects. Except in the simplest models, the actual calculations of these wave
functions involve additional assumptions which may appear reasonable, but are not
really well justified.

Although further research in quantum cosmology may lead to universal acceptance of a particu-

larly “natural” wave function, the fundamental disagreements so far are not encouraging.

49
SE is the Euclidean action for gravity coupled to a scalar field φ, and the integral ranges over all

Reimannian metrics on a given manifold. There is no general rigorous definition for the measures dµ(gab
and d(φ), but theorists have made good use of Euclidean techniques in tackling a wide variety of problems.
See Gibbons and Hawking (1993) for an overview of these techniques, and Isham and Butterfield (2000)
for a philosophical assessment of Euclidean quantum gravity.
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Despite their differences these proposals share one common ingredient: they both intro-

duce global laws, in the form of global constraints on the initial state. Although they are often

ignored by philosophers, similar “laws of coexistence” appear in other dynamical theories as

constraints on initial data (discussed in more detail in §6.2.2). Both proposals in effect attempt

to identify such constraints in a full theory of quantum gravity despite our ignorance; while

this is certainly a risky strategy, I see no reason to rule out the possibility that quantum gravity

incorporates such a global constraint.

Returning to the line of thought above, why not admit that the initial state may simply

reflect a brute, contingent fact? A modern Leibnizian would respond by reiterating the Principle

of Sufficient Reason. But is such a demand for further explanation—either in terms of new local

physics or in terms of a global constraint law—warranted? Physicists generally recognize that

laws serve as explanatory stopping points: there is no empirical answer to a question regard-

ing why a particular law of nature obtains. Initial conditions may also function as explanatory

stopping points in the same way as laws, at least in the sense that it would be inappropriate to

make further explanatory demands regarding initial conditions. The force of traditional empiri-

cist criticisms of the cosmological argument is that attempts to meet the demand carry one into

metaphysics or theology. Vilenkin (1983) offers a rare confession that in discussing the quantum

state of the universe he (and his colleagues) are engaged in “metaphysical cosmology,” which

he defines as “the branch of cosmology totally decoupled from observations” (p. 2854). Rather

than attempting to clarify the sense of explanation invoked above, the point can be put in terms

of the epistemic risk involved in declaring that a particular regularity reflects the laws rather than
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initial conditions. In most cases, the claim that a law obtains entails a number of other conse-

quences that do not follow if the regularity is chalked up to contingent initial conditions, but in

cosmology this is a modal distinction without an empirical difference.

Up to this point I have argued that invoking metaphysical principles to justify a demand

for either further dynamical theories or a theory of initial conditions is unconvincing. But I

expect that many cosmologists would recoil at being classified as metaphysicians, and instead

insist that other considerations motivate research in early universe cosmology. I will turn to these

other considerations in the next two chapters.

5.4.1 Probabilities

The discussion above has assumed that the intuitively compelling fine-tuning arguments

can be put on firmer footing. The force of these arguments derives from the astounding numbers

involved; typical presentations of the flatness problem end with a dramatic punchline: in the

classical cosmological models, |Ω−1| < 10
−59 at the Planck time! But arguments like these are

notoriously shaky as long as the ensemble and probability distribution assigned over it remain

unspecified.50

The sting of the flatness problem derives from the assumption that the probability for ini-

tial values of Ω is “spread out evenly” over an interval of values (0, a) ∈ R with a > 1. In other

words, one takes a uniform probability with respect to the standard Lebesgue measure on a set

of real numbers. But is there any reason to use this particular measure in assigning probabilities

to the initial values of Ω? Several authors have argued that the flatness problem disappears when

50George Ellis in particular has frequently emphasized the difficulties with applying probabilistic argu-
ments in cosmology, see Ellis (1990); Coles and Ellis (1997) and references therein.



190

this measure is replaced with a more appropriate choice.51 For example, Hawking and Page

(1988) argue that a dynamically invariant measure (introduced in Gibbons et al. 1987; Henneaux

1983) “solves” the flatness problem, in the sense of showing that almost all solutions to the field

equations for classical FLRW models coupled to a massive scalar field have negligible spatial

curvature. The FLRW models with a massive scalar field can be treated as a constrained Hamilto-

nian system, where the trajectories through phase space correspond to the dynamical evolution of

a cosmological model. The phase space naturally possesses the structure of an even-dimensional

symplectic manifold. Gibbons et al. (1987) showed that the symplectic form of this phase space

can be used to define a volume element µ on a cross section of the constraint space. This volume

element is invariant under the Hamiltonian phase flow, which means that the measure of a given

trajectory (or set of trajectories) is independent of the cross section used to evaluate the measure.

Hawking and Page (1988) show that according to this canonical measure, all but a finite subset

of solutions behave like the “flat” FLRW models (i.e., they expand to arbitrarily large size with

negligible spatial curvature). Thus a probability distribution that is uniform with respect to µ

would assign a zero probability to the set of non-flat solutions; in this sense there is no flatness

problem.

This result exploits the fact that a probability distribution that is absolutely continuous

with respect to µ assigns a zero probability to any measurable set whose complement has finite

measure, in the case where the full space has infinite measure. But as Hawking and Page (1988)

51In addition to the “canonical” measure introduced by Gibbons, Henneaux, Hawking, and Stewart,
Evrard and Coles (1995) derive a “minimal information” measure using Jaynes’s principle. Their argu-
ment based on this measure leads to a similar conclusion, namely that “there is no flatness problem in a
purely classical cosmological model” (original emphasis, p. L96). Cho and Kantowski (1994) introduce
a kinematic measure based on De Witt’s field metric (apparently compatible with the canonical measure),
and reach similar conclusions to the work of Hawking and Page. For a review of the results outlined in
the text, see Coule (1995).
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go on to show, several other questions do not admit unambiguous answers based on measure

alone: in particular, assessing the probability that inflation occurs in their model requires taking

the ratio of two sets of infinite measure, and is thus ambiguous (cf. Hollands and Wald 2002a).

The ambiguity could be resolved by introducing an objective probability distribution, if only

there were grounds for doing so.52 Whatever one might think of efforts to justify probability

distributions in statistical mechanics, the strategies employed in that case do not carry over to

cosmology. The phase space of cosmological models is clearly not ergodic since the trajec-

tory corresponding to a particular cosmological model does not cycle through the phase space.

Furthermore, there is no widely accepted definition of entropy for the gravitational field. The

introduction of “tychistic” probabilities (single case objective chances) associated with the cre-

ation of the universe also faces important obstacles. The proper theoretical context for assigning

single case probabilities to a “creation event” has not yet been (and may never be) formulated.

Calculating probabilities based on current versions of quantum cosmology requires choosing and

interepreting the wave function of the universe, and I briefly described the fundamental difficul-

ties facing these two tasks above (see, e.g. Unruh and Wald 1989; Isham and Butterfield 2000,

for further discussion). The nature of the probabilities assigned to various “initial states” is one

of the central contentious issues in quantum cosmology, and any appeal to tychistic probabilities

awaits its resolution.

This raises a second issue regarding Hawking and Page (1988)’s results: how should

quantum effects expected to dominate near the singularity be taken into account? As Coule

(1995, p. 456) aptly puts it, having an appropriate measure “is tantamount to having a correct

52See also Earman and Mosterin (1999); Sklar (1993) for discussions of the difficulties with introducing
probability in this context.
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quantum gravity theory.” Attempts to finesse this issue have taken two different tacks. Belinsky

and Khalatnikov (1987); Belinsky et al. (1988) introduce a measure defined at the “quantum

boundary,” the surface where the energy density of the scalar field reaches m
4

p
(mp ≈ 2.2×10

−5
g

is the Planck mass). The classical initial data are assumed to be equiprobable—equal areas on

the quantum boundary are assigned equal probabilites. Belinsky and Khalatnikov (1987) argue

that this is the simplest proposal for assigning probabilities in the absence of further knowledge

regarding the quantum initial state. Since the proposed measure is not invariant under dynamical

evolution (Hollands and Wald 2002b, pp. 6-7), choosing a different boundary surface would

result in different probabilities. A second more ambitious approach aims to incorporate projected

principles of Planck-scale physics prior to assigning a measure. For example, according to the

Planck equipartition proposal, at the Plack time (tp ≈ 10
−43

s) all energy densities are roughly

equal to the Planck energy density (Ep ≈ 10
19

GeV ) (Barrow 1995). The underlying idea is

that gravitational interactions prior to tp will effectively transfer energy between gravitational

degrees of freedom (such as the anisotropy energy density in gravitational waves) and matter-

energy density. Although Barrow (1995) does not explicitly define a measure, he argues that

(restricting attention to anisotropic, homogeneous models) the PEP eliminates models with large

initial anisotropies, leaving it more probable that the observed isotropy is compatible with an

“aribtrary” initial state without invoking inflation.

To sum up, the attempt to find firmer foundations for the assessments of probability

invoked in the fine-tuning arguments has instead revealed shifting sand. It is impossible to avoid

the theoretical uncertainties associated with the initial state in attempts to apply probabilities

in cosmology. I should add that many cosmologists would presumably reject this demand for
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firmer foundations as a mathematical nicety, and insist that the various fine-tuning problems are

important clues whether or not they satisfy philosophers.53

5.5 Anthropic Principles

From its first explicit formulation in Carter (1974), the anthropic principle (in its many

guises) has sparked considerable controversy among cosmologists. Many leaders in the field

endorse some version of anthropic reasoning as an appropriate response to fine-tuning problems,

yet other equally astute and respected scientists and philosophers dismiss the whole idea out of

hand. Here I will argue briefly for a deflationary account. The term “anthropic principle” is as

much a misnomer as “U.S.S.R.”: the weak anthropic principle simply highlights the importance

of observational selection effects, and involves nothing particularly “anthropic” and invokes no

new “principles,” and stronger versions of the principle make a number of broader (and ques-

tionable) explanatory demands. 54

Dicke (1961)’s response to Dirac’s cosmological speculations has been widely hailed

as exemplifying succesful anthropic reasoning. Carter characterized Dicke’s argument as an

application of the “weak anthropic principle” (WAP), which I will define as follows (compare

Carter 1974, Barrow and Tipler 1986, p. 16):

Weak Anthropic Principle: What we observe is restricted by the necessary condi-
tions for our existence.

53Charles Misner, for example, acknowledged that “mathematicians” find the fine-tuning arguments
unconvincing, but still argued that they have intuitive force and heuristic value (Misner 2001).

54The anthropic arguments of Carter and other cosmologists in the 70s has spawned a vast literature;
see, e.g., Barrow and Tipler (1986); Leslie (1989); Bertola and Curi (1993). My aim is to give a concise
version of the deflationary account, which has been considered in greater detail and depth elsewhere (see,
in particular Earman 1987b; McMullin 1993).
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All parties to the anthropic debates have endorsed Dicke’s use of the WAP, although in some

cases the endorsement carries over to stronger anthropic principles and in others the WAP is

treated as a corollary of confirmation theory or plain common sense. Dicke’s argument un-

dermined the surprising coincidence Dirac saw in order of magnitude equality between “large

numbers” constructed out of fundamental constants:

t0
e2/mec

3 ≈ 10
39

,
e
2

Gmpme

≈ 10
39

. (5.4)

Thus the ratio between the age of the universe t0 and a natural “atomic time scale” (where e,me

are the charge and mass of the electron and c is the speed of light) and the ratio between the

electrostatic and gravitational forces between a proton (with mass mp) and electron both have

approximately the same value. Dirac’s wonder at this coincidence (and others) inspired a new

theory which he called the “Large Number Hypothesis”: all such large dimensionless numbers

constructed from the fundamental constants “are connected by a simple mathematical relation,

in which the coefficients are of the order of magnitude unity” (Dirac 1937, p. 323). Since the

first number includes the time t0, so must they all; Dirac assumed that the masses and electric

charge remain constant, forcing him to accept time variation of the gravitational “constant” G.

While Dicke was no foe of time-varying “constants,” he trenchantly criticized Dirac for

failing to take selection effects into account. Surprise at the fine-tuning coincidences might be

warranted if t0 could be treated as “a random choice from a wide range of possible values” (Dicke

1961, p. 440), but there can only be observers to wonder at the coincidence for some small range

of t. Dicke (1961) argued that if main sequence stars are still burning and an earlier generation of

red giants had time to produce carbon in supernovae—surely two minimal requirements for the
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existence of observers like us—then the value of t must fall within an interval such that Dirac’s

coincidence automatically holds. The “evidence” provided by eqn. (5.4) bears no relation to the

truth or falsity of Dirac’s hypothesis, since these relations are guaranteed to hold.

The WAP thus appears to be nothing more or less than a selection effect. Rather than

guiding scientific theorizing as a principle might be expected to do, WAP effectively neutral-

izes some evidential claims. Bayesians can account for this by explicitly conditionalizing on

the presence of complex systems such as astrophysics PhD.’s: Ps(·) = P (·|A), where Ps

is the probability measure with the selection effect taken into account, and A is the proposi-

tion that astrophysicists exist. Dicke’s argument shows that with this new probability measure,

Ps(LN |HD) ≈ Ps(LN |HB) ≈ 1, where LN is the large number “coincidence” in eqn. (5.4),

HD is Dirac’s cosmological theory, and HB is the standard big bang theory. Thus the coin-

cidence is neutral with regard to Dirac’s idea or the standard cosmology. More generally, a

selection effect is in force if the truth value of a given hypothesis is irrelevant to the evidence

obtained in a given test. In other words, conditionalizing renders an originally “informative”

piece of evidence E useless in that Ps(E|H) ≈ Ps(E|¬H). Here I have cashed this idea out in

Bayesian terms, but the idea of a selection effect should be captured in any adequate confirmation

theory.55 The imaginative and difficult part of arguments like Dicke’s comes in recognizing the

connections between our existence and a number of striking features of the universe—ranging

from its overall near uniformity to the existence of a resonance level of the C
12 nucleus at

55Clearly I have only given a sketch of how a selection effect might be accounted for, and two recent
lines of work challenge this approach. Roush (1999, Chapter 2) argues that taking selection effects into
account requires considering all evidence that is nomically related to our observational procedures, rather
than only the evidence available. Treating selection effects by conditionalizing on given evidential claims
may miss matters of fact that nonetheless produce biases in experimental or observational procedures,
and Roush argues in favor of a more general account of selection effects partially motivated by Nozick’s
idea of “tracking”. Bostrom (2002) develops a theory of observational selection effects, the centerpiece
of which is the claim that all evidence statements should be understood as indexicals (“these observations
are made by us”), where “we” are “randomly” picked members of a specified reference class.
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around ≈ 7.7MeV (along with numerous other examples; see, e.g., Barrow and Tipler 1986).

But throughout this argument we could have conditionalized on the existence of rutabagas or

cockroaches and reached the same conclusions; what matters is the existence of complex car-

bon based systems and not homo sapiens, or even living things, in particular. This is not to say

that more detailed information about our species never comes into play in considering selection

effects, but rather that the general point regarding the use of evidence is not in any way anthropic.

Carter (1974)’s more provocative strong anthropic principle (SAP) was directly inspired

by the fine-tuning worries discussed in the previous section. Most of the formulations of the

principle share a family resemblance to this one:56

Strong Anthropic Principle: The universe must have properties such that life devel-
ops within it.

This formulation clarifies little due to the ambiguity of “must,” but in practice Carter and others

wield the SAP as an explanatory demand. McMullin (1993) explicitly formulates the SAP as

such: “Evidence of cosmic ‘fine-tuning’ ought to [or, in a weaker formulation, may be] given an

anthropic explanation” (p. 377). All that separates this demand from the indifference principle

discussed above is the qualifier “anthropic.”

To clarify the explanandum and the form of “anthropic” explanation it will be helpful

to consider one of the famous anthropic defenses of the big bang model, that of Collins and

Hawking (1973). Homogeneous, anisotropic solutions of the EFE fall into three classes: those

with an expansion rate lower than, equal to, or greater than the “escape velocity” (the rate of

56Other anthropic principles have been formulated, including the “final anthropic principle” – that life
must not only exist but persist – and even crazier variants, but I will not discuss them here (see, e.g.,
Barrow and Tipler 1986).
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expansion needed to avoid recollapse). The bulk of their paper is devoted to proving two theo-

rems: first, that for homogeneous solutions of EFE which obey the dominant energy condition

and positive pressure criterion, the set of initial data which isotropize as t → ∞ is of mea-

sure zero; in other words, anisotropic modes dominate in generic models.57 On the other hand,

Collins and Hawking (1973) also showed that for particular models (Bianchi type V II0) there

is an open neighborhood of initial data including the exactly flat case, such that every element

of this neighborhood approaches isotropy at late times. They respond to these results as follows

(Collins and Hawking 1973, p. 319, cf. p. 334):

We shall now put forward an idea which offers a possible way out of this [fine-
tuning] difficulty. This idea is based on the discovery that homogeneous cosmo-
logical models do in general tend toward isotropy if they have exactly the escape
velocity. Of course, such “parabolic” homogeneous models form a set of measure
zero among all homogeneous models. However, we can justify their considera-
tion by adopting a philosophy that has been suggested by Dicke (1961) and Carter
(1968).58 In this approach one postulates that there is not one universe but a whole
infinite ensemble of universes with all possible initial conditions. From the exis-
tence of the unstable anisotropic mode it follows that nearly all of the universes
become highly anisotropic. However, these universes would not be expected to
contain galaxies [...]. The existence of galaxies would seem to be a necessary pre-
condition for the development of any form of intelligent life. Thus there will be life
only in those universes which tend toward isotropy at large times. The fact that we
have observed the universe to be isotropic is therefore only a consequence of our
existence.

Some commentators have characterized “anthropic explanations” as primarily aimed at remov-

ing puzzlement in the face of fine-tuning—in this case, isotropy shouldn’t be puzzling since it

57Collins and Hawking (1973) define isotropization of an expanding model as the conjunction of the

following three properties: (1) T
00

> 0 and limt→∞
T

0i

T 00 = 0, (2) limt→∞
σ
α̇ = 0, where σ is the shear

and α̇ is the volumetric expansion rate, and (3) the “cumulative distortion” β ≡
∫

t
σdt approaches some

constant as t → ∞. If T
ab is diagonalizable, it can be written in the form Tab = ρtatb +

∑

i=1,2,3 pix
i

a
x

i

b
where ρ corresponds to the energy density and pi are the principal pressures. The dominant energy
condition then states that ρ ≥ |pi|, and the positive pressure criterion holds that

∑

i=1,2,3 pi ≥ 0.
58Here Collins and Hawking (1973) refered to an unpublished Cambridge University preprint by Bran-

don Carter, and I am unsure whether that paper ever appeared in print.
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is a necessary condition for our existence. Galaxies develop only in those universes with an

expansion rate close enough to the escape velocity that anisotropic modes do not dominate. As

Earman (1987b) has emphasized, such an explanation is besides the point if the demonstration

that isotropy is a necessary condition for our existence is precisely the source of puzzlement,

and in any case Collins and Hawking (1973) do not stop there. They further invoke an ensemble

of actually existing universes. Within this setting SAP sounds more like WAP: the surprise at

fine-tuning is mitigated by a “selection effect,” in that among physically possible worlds (initial

data sets) the subset of worlds compatible with observers share various features such as isotropy.

Even though this subset is of measure zero, it happens to be the only place where observers could

be located within the ensemble.

Fans of the SAP such as Leslie (1989) have argued that the explanatory demand posed

by fine-tuning can be answered either along these lines, via an actually existing Multiverse, or an

appeal to Design. First I should emphasize that these arguments often exploit the ambiguity of

the word “explanation”: it is important to distinguish anthropic explanation from explanations

related to the laws of a successful theory (however this notion of explanation is further charac-

terized). This ambiguity encourages the idea that the availability of anthropic explanations in

itself provides evidence for either the Multiverse or the Designer. But without substantial inde-

pendently motivated additions, either idea is completely uninformative. We already knew that a

universe like ours exists; if the Multiverse is developed within the context of a particular physical

theory (such as chaotic inflation), there is some chance of deriving new results based on a physi-

cally motivated probability measure over the ensemble. Existing accounts are not encouraging in

this regard: although inflationary models naturally accomodate a multiverse scenario, the mech-

anism introduced to produce variation in, say, values of the fundamental constants in different
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regions of the multiverse is typically not independently motivated or constrained.59 Likewise,

opening the door to a theological explanation may do more than remove our puzzlement only if

it is accompanied by a robust sense of what the Designer desired (as McMullin 1993 also em-

phasizes). Accounts of the Multiverse or Designer do not need to be informative in this sense to

be appealing to metaphysicians or theologians, but they do need to be informative in this sense

to fall within the realm of empirical inquiry.

In summary, the WAP cautions against taking evidence obtained for cosmological theo-

ries at face value, since our inherently parochial perspective acts as an indirect filter. Although

handling this selection effect is a subtle issue, the subtlety derives from the complicated rela-

tionship between cosmological theories and our observational procedures, and not from any new

anthropic addition to confirmation theory. The SAP offers a way of soothing worries regarding

fine-tuning, but only in the sense of reducing puzzlement by appealing to extremely speculative

physical accounts of the Multiverse or a theological account of Design.

59GTR without inflation can also accomodate a “multiverse,” in which vastly separated different regions
have varying degrees of homogeneity and isotropy.
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Chapter 6

Explanations in Cosmology

Philosophers of science have often pondered cases of theory choice between empirically

equivalent rival theories, such as the choice of Copernican astronomy over its Ptolemaic rival or

Einstein’s special relativity over (a portion of) Lorentz’s electron theory. Kuhn (1970) famously

described such cases of theory change as more like a “conversion experience” (p. 151) than ra-

tional deliberation, although in later work he retreated from the rhetoric of Structure and argued

that—far from being irrational—scientists have often found a number of criteria for evaluating

competing theories, namely judgements of accuracy, consistency, scope, simplicity, and fruitful-

ness.1 While few historians or philosophers would argue that these criteria (and perhaps a few

others) have not played a role in theory choice, empiricists insist on sharply dividing empirical

adequacy, taken to be the only legitimate ground for believing a theory to be true, from the other

criteria, which are “pragmatic virtues” of a theory relevant merely to its acceptance by work-

ing scientists. Van Fraassen argues for a sharp distinction between belief and acceptance of a

theory combined with epistemic “voluntarism”: while “freedom from conflict with evidence is

the bottom line” regarding belief in a theory, the “quasi-political process of decision” by which

scientists choose (or provisionally accept) a theory, partially based upon judgements of its prag-

matic virtues and vices, is a rationally permitted “leap of faith”.2 For the constructive empiricist

1Kuhn (1977, p. 321-22) claims no originality for this collection of virtues, and similar lists crop up
throughout the literature.

2The quotations are from van Fraassen (1985, p. 281 and 296), and these themes are developed at
greater length in van Fraassen (1980, 1989).
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the explanatory adequacy of a theory may set it apart from empirically equivalent rivals, but

only in terms of grounds for accepting the theory—regarding grounds for belief there can be no

distinction between empirically equivalent rivals. On this account there is no over-arching al-

gorithmic Methodology which serves to guide theory choice in cases where empirical adequacy

alone does not render a clear verdict.

In opposition to this empiricist position, several realists have argued that explanatory

adequacy (characterized in different ways) can and must legitimately serve to justify belief in a

theory, as opposed to mere acceptance of it. Broadly characterized, the realist goal is to find ratio-

nally compelling grounds for theory choice based on the criteria demoted to “pragmatic virtues”

by empiricists such as van Fraassen. For example, Glymour (1980a, p. 31) acknowledges that

if successful explanations are to provide reasons for belief in a theory above and beyond its

empirical adequacy, they must do “something more to the phenomena, or say something more

about the phenomena, than merely entail their description.” Glymour’s own suggestion (further

developed in Glymour 1980b, 1985) is that explanations eliminate contingency, in that regulari-

ties follow as “mathematical necessities” once additional theoretical structure is introduced, and

that they unify, in that diverse regularities are shown to exhibit a common pattern. The explana-

tory advantages usually claimed for inflationary cosmology over standard cosmology fit nicely

with Glymour’s suggestion: first, inflation is usually presented as a natural consequence of uni-

fying particle physics with general relativity, and second, it apparently eliminates many of the

“brute facts” which must be stipulated to hold as features of the initial conditions in standard

cosmology. I will take up these two alleged explanatory advantages of inflation in turn: §1 be-

low focuses on unification and §2 focuses on the “robustness argument,” namely that inflation
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offers a more robust explanation of the early universe’s regularities in that it does not depend on

“finely-tuned” initial conditions.

6.1 Unification

Contemporary physics abounds with talk of unification: proponents of the various GUTs

of the 80s, and more recently of string theory, have emphasized their ability to account for the

fundamental forces in a single framework as one of their most appealing features. Maudlin

(1996) calls this strong emphasis on unification a “velvet revolution in the conception of the aim

of physical theory,” and argues that the desired degree of unification falls somewhere between

mere consistency of different theories and complete unification (exemplified by historical cases

such as special relativity, discussed below). Researchers in early universe cosmology often de-

scribe the connection between cosmology and fundamental particle physics in terms similar to

Edward Kolb’s:

Nowhere is the inherent unity of science better illustrated than in the interplay
between cosmology, the study of the largest things in the Universe, and particle
physics, the study of the smallest things. (Kolb 1994, p. 362)

Successes in “deriving” various features of the universe from fundamental physics (e.g. baryo-

genesis) bolster such claims. For the last two decades the goal of ongoing research is often

presented as completing this unified picture: the aim is to show that even more features of the

universe can be explained as consequences of particle physics. As the first half of this disserta-

tion illustrates, the commitment to this picture of how the “inner space – outer space” connection

functions has been widely accepted and continues to shape research in the field. Early universe

cosmology seems to be caught up in the “velvet revolution.”
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However, glowing reports of the unification achieved in early universe cosmology have

been exaggerated, according to several critics:

So far, there is little or no observational evidence which motivates the idea that
particle physics is intimately related to cosmology. ... [I]t has yet to be established
that particle physics is relevant to cosmology. (Zinkernagel 2002, original emphasis,
p. 18)

Zinkernagel further emphasizes a point discussed above: as long as the inflaton potential is

treated as a free function, rather than as a feature of a field identified in a particle physics the-

ory, no substantive unification has been achieved. Earman and Mosterin (1999) emphasize this

difficulty (and many others) in their sustained critical assessment of inflation. Torretti (2000)

criticizes the standard big bang model on the grounds that it lacks any satisfying sense of unifi-

cation: he argues that the incompatibility of quantum mechanics and general relativity undercuts

even the status of the CMBR as evidence in favor of the big bang model—to say nothing of the

more speculative applications of particle physics to even earlier times.

Below I will focus on the nature and force of unification arguments, first considering

general accounts of unification and then turning to the case of cosmology. In order to function

as a criterion of theory choice on a par with empirical adequacy, one would need to formulate

a definition of “unification” clear enough to differentiate between competing theories, which

also is not based on controversial commitments regarding the course of future theory. I will

argue that the most detailed account of unification available (due to Kitcher) fails to satisfy

this requirement. The case of early universe cosmology aptly illustrates the highly defeasible

arguments regarding “unification” that occur in the development of novel theories.

Before going further I should clarify two different senses of unification at play. Unifica-

tion in the first sense refers to a theory’s ability to bring together a number of diverse phenomena
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within a single theoretical framework. This synthesis may involve a reductive claim, in which

two different entities (such as electromagnetic waves and light) are shown to be essentially the

same thing. On the other hand, unification may bring together two different domains of phenom-

ena previously regarded as distinct, such as the celestial and terrestrial. (Morrison 2000 calls the

former “reductive unification” and the latter “synthetic unification.”) Two of the paradigm cases

of unification in modern physics, both due to Einstein, fall under this general sense of unifica-

tion.3 Very briefly, special relativity achieved a unification by changing the understanding of

Lorentz invariance. In Lorentz’s theory, the Lorentz invariance of laws governing matter follows

from what Janssen (1997) calls the “generalized contraction hypothesis.”4 This hypothesis ef-

fectively guarantees the Lorentz invariance of the laws governing matter, despite their original

formulation as Galilean invariant laws in Newtonian spacetime. The theory does not provide

an explanation of why the generalized contraction hypothesis holds true. In contrast, special

relativity unifies classical mechanics and electromagnetism in that the Lorentz invariance of the

laws governing matter and fields both follow from the structure of Minkowski spacetime, and no

generalized contraction hypothesis is needed. General relativity is also based on a remarkable

unification, namely Einstein’s realization that gravity and inertia have “the same essential nature

[wessensgleich].” In Newtonian theory, gravitation resembles other forces in that it merely de-

flects particles from inertial trajectories, but bears no other direct link to inertial structure (i.e.,

3Both of the following examples have been discussed extensively in the literature; discussions with
a similar focus on unification include Maudlin (1996); Janssen (1997); Morrison (2000). I have also
benefitted from discussions with Michel Jannsen.

4Suppose that a given material system produces a field configuration in a state of rest (relative to the
aether). Lorentz’s theorem of corresponding states shows how to translate this field configuration into
a set of “fictive fields” in a frame moving uniformly with respect to the aether (with a given velocity,
say v). The generalized contraction hypothesis then holds that when put into a state of uniform motion
(with a velocity v relative to the aether) the material system alters so that it produces the appropriate field
configuration. As Janssen (1997) discusses at length, this generalized contraction hypothesis covers the
familiar Lorentz-Fitzgerald contraction along with a number of other effects which explain the null results
of all second-order aether drift experiments.
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the affine structure of Newtonian spacetime). However, the odd fact that gravitational “charge,”

unlike electric charge, is precisely equal to the inertial mass sets gravitation apart from the other

forces. For the other forces one can imagine varying the ratio of electric charge (for example)

to inertial mass in order to locally distinguish the electrical force from inertial effects, but the

equality of inertial and gravitational mass prevents this in the case of gravitation. General rela-

tivity eliminates the distinction between gravitational force and inertial structure, replacing them

with a single inertial-gravitational structure embodied in the (dynamical) metric field. Inertia and

gravitation are represented in the theory by a single structure, rather than two distinct structures

that are mysteriously linked.

The case of GTR further illustrates a different sense of unification, understood as an intra-

theoretic relationship: the theory of GTR combines the apparently incompatible theories of STR

and classical graviational theory. This suggests a definition of unification in terms of a structural

relationship between theories: a theory T unifies T0 and T1 (identified with classes of models

O,O0, O1, respectively, as in the semantic conception of theories) if and only if for every model

M0 ∈ O0, there are corresponding models M1 ∈ O1 and M ∈ O, such that both M0 and M1 can

be embedded in M , and vice versa.5 The two senses of unification are typically blurred because

it is assumed that successfully combining theories results in unification in the first sense, as it

undoubtedly did in several historical cases (such as the development of GTR). Thus we might

add a further requirement that the theory M should not only recover the models of the two prior

theories, but do so by achieving unification in the first sense. Perhaps this could be characterized

by requiring that (in some sense to be made precise) M0 and M1 are more “finely tuned” than the

5This formulation presumes that all three theories can be formulated in a common framework to permit
the assessment of these questions of embedding. This is by no means a trivial assumption, and I see no
reason to expect that it will hold in all cases where one might wish to grant a more intuitive sense of
“unification.”
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model M (e.g., they require more arbitrarily set free parameters). Something like this account

may capture the sense in which many of our current theories “unify” preceeding theories. But

before turning to Kitcher’s detailed attempt to formulate something along these lines, I will

briefly discuss two motivations for formulating unified theories.

There is often a strong motivation for attempting to combine apparently inconsistent

theories: one wishes to describe systems falling into the overlapping domains of applicability

of the theories. In the case of early universe cosmology, Olive (1990) calls the application of

QFT to the early universe “compulsory” since classical physics breaks down at the incredibly

high temperatures the early universe is expected to reach. QFT predicts a number of novel

phenomena at these temperatures, most notably phase transitions. As we saw in Chapter 3, in

the Standard Model temperature dependent corrections to the effective potential of the Higgs

field result in symmetry breaking phase transitions at high temperature. This latter claim is

based on extrapolating the FLRW expansion backwards; while this should be taken with a large

grain of salt, there are (as far as I know) currently no viable alternative scenarios in which

the temperature reaches a low finite maximum.6 Without a low limiting temperature, the early

universe reaches temperatures and densities which can only be treated by quantum field theory.

In addition, the strong gravitational fields in the early universe demand a general relativistic

treatment. Thus, any theoretical treatment of this era requires taking both quantum field theory

and general relativity into account (at least to some degree)—and in this modest sense requires

some degree of unification.

6The electroweak and quark deconfinement phase transitions are expected to occur at roughly 10
15 K

and 10
12−10

13 K, respectively, and the early universe should reach these temperatures in the first fraction
of a second after the big bang (at t ≈ 10

−12 and t ≈ 10
−5 − 10

−6 seconds, respectively). String theory
apparently predicts a finite limiting temperature, but it is on the order of 10

31 K—much higher than the
temperature where phase transitions are expected to occur (see Kolb and Turner 1990, §11.5).
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The argument loses its force if one adopts the view that physics offers models of specific

phenomena with only a very limited domain of applicability (see, in particular, Cartwright 1999).

On this view, there would be no need to worry about the overlap in the domains of applicability

of QFT and GTR, since neither actually extends as far as the physicists expect: the domain of

physical theories does not extend beyond the carefully shielded “nomological machines” con-

structed to exemplify the regularities encoded in their laws. Although I do not have the space to

counter this objection in any detail here, let me briefly sketch one response. Cartwright (1999)’s

view is partially based on her argument that various purported laws are actually falsified when

applied outside of the carefully restricted domain of a nomological machine. But as Smith

(2002c) argues, these arguments in fact target the differential equations derived from the laws

conjoined with various provisos (in Hempel’s sense) rather than the laws themselves. While it

is undoubtedly true that the laws of motion derived from Newtonian gravitational theory for the

two body problem do not accurately describe the complicated real motions of the solar system,

this gives reason to develop a more sophisticated account within the framework of Newtonian

gravitational theory rather than to abandon that framework entirely. This is only one strand of

Cartwright (1999)’s argument, and tugging at it does not by any means unravel her position.

In any case, here I will set aside these concerns and adopt the view that physicists have some

warrant for taking the domains of their theories to extend beyond “nomological machines.”

Returning to the main line of argument, philosophers have argued that there are stronger

motivations for developing unified theories than the need for a consistent theoretical description

holding in overlapping domains. In particular, Friedman (1983) argues at length that unification

enhances confirmability, roughly because a more unified theory can be confirmed by a wider
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range of phenomena. On this view, unified theories are to be preferred because of their con-

firmatory advantage: a unified theory receives a larger confirmatory boost from the successful

prediction of two (or more) phenomena than distinct theories predicting the same phenomena.

Friedman uses the molecular model of gases (which I will call T ) as an example. The molec-

ular model entails predictions regarding a wide range of phenomena, including the behavior of

gases, chemical phenomena, thermodynamics, etc. By way of contrast, a purely phenomenolog-

ical description of gases (call this P ) considered separately only entails predictions regarding

the behavior of gases.7 As a result of passing experimental tests in other areas, the probability

assigned to T may exceed the prior probability assigned to the purely phenomological theory

P ; since T entails P , the requirement of probabilistic coherence implies that the probability of

P should be increased as well.8 The same holds true for the conjunction of two theories: suc-

cessful predictions of a conjunction of two theories (T1 ∧ T2) may boost Pr(T1 ∧ T2) past the

probability initially assigned to either theory individually, but since the conjunction entails both

theories the degree of belief assigned to each theory must be increased to equal Pr(T1 ∧ T2).
9

Thus the conjunction of theories allows scientists to develop more well-tested theories. This

assessment of the advantages of unification fits well with research work in particle cosmology:

in several cases, the conjunction of cosmology and particle physics is subject to much stronger

observational tests than those provided by earth-bound accelerator experiments alone.

7By “considered separately” I mean that it is not treated as a consequence of T ; if P is regarded as a
logical consequence of T , then it would be impossible for P to be less well-confirmed than T since P is
a logical consequence of T (Friedman 1983, p. 243-244).

8Although Friedman does not endorse a Bayesian approach to confirmation theory, this point holds
given that a theory T cannot have a lower “degree of confirmation” (Friedman’s term) than a theory which
entails it.

9Friedman further argues that the conjunction of theories over time is more accurately represented
in terms of a reduction of observational structure to theoretical structure (i.e., a literal identification of
elements of the two) rather than a representation (merely a claim that the former can be embedded in the
latter), and that the former is available only to a scientific realist. I will not pursue this question in more
detail, but see Morrison (2000); Kukla (1995) for criticisms of this account.
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While this may establish an epistemic advantage of unification understood as conjuc-

tion of theories, this argument notably fails to establish an epistemic advantage for any form

of unification stronger than mere conjunction. This argument in favor of unification is a sub-

stantial retreat from Friedman’s first account of unification (cf. Kukla 1995), according to which

unification provides greater understanding in the sense of “reducing the total number of inde-

pendent phenomena that we have to accept as ultimate or given” (Friedman 1974, p. 15). The

formal treatment of “independently acceptable phenomena” in Friedman’s first account suffers

from a number of deficiencies (see Salmon 1989, pp. 94-101, for a concise critique). Without

an account of the epistemic advantages of such “true unification”, Friedman’s second account

provides no reason to prefer a truly unified theory to a massive conjunction of theories with the

same empirical consequences. One immediate response is to note that combining two theories

is rarely a straightforward logical maneuver; instead, attempts to combine two (initially incom-

patible) theories often result in corrections and alterations of both theories, leading to a unified,

corrected theory rather than a mere conjunction. However, an empiricist may respond that accep-

tance of such a new theory is based on its succssful new predictions and has nothing to do with

its genealogy (this is essentially van Fraassen’s response to Putnam’s conjunction argument, van

Fraassen 1980, pp. 83-87). In the next section I turn to a detailed attempt to capture the intuition

behind Friedman’s initial account.

6.1.1 Kitcher’s Account of Unification

Kitcher’s account of unification has a central role in his ambituous project of finding a

global methodology applicable to all sciences at all times. In particular, according to Kitcher the
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fundamental aim of scientific inquiry is to provide an economical, unified systematization of our

beliefs (Kitcher 1989, p. 432):

Science advances our understanding of nature by showing us how to derive descrip-
tions of many phenomena, using the same patterns of derivation again and again,
and, in demonstrating this, it teaches us how to reduce the number of types of facts
we have to accept as ultimate (or brute).

Theory change in science can then be characterized as rational and progressive based on the

extent to which it advances this fundamental aim.10 In this section, I will argue that Kitcher’s

proposed means of comparing unifying power do not fulfill these grand ambitions. In particular,

the proposed principle for assessing unifying power applies only to a narrow range of cases, and

Kitcher provides no argument for his further “principle of optimism,” which would insure that

only this narrow range of cases really matters. In addition, Kitcher’s focus on global system-

atizations of knowledge neglects the important question of how to manage a trade-off between

unification within a restricted domain and overall, global unification. Both of these shortcomings

indicate that Kitcher’s account of comparitive unifying power does not offer a complete account

of explanatory progress.

Kitcher characterizes deductive systematization in terms of sets of argument patterns

used to relate various statements in K , our set of beliefs. The focus on argument patterns (rather

than, say, axiomatizations of a theory) stems from Kitcher’s view that understanding a theory

requires “internalizing” appropriate arguments, along with his interest in biological cases where

mathematical axiomatizations would be incredibly remote from practice. Argument patterns

10I should immediately acknowledge that Kitcher (1993)’s much richer account of scientific practice
and progress answers many of the objections I have to this earlier account. In this new account Kitcher
still holds that “the growth of scientific knowledge is governed by a principle of unification” (Kitcher
1993, pp.171-72), but he admits a variety of other factors influencing theory choice in his “compromise
model” of rationality. However, I think it is still useful to consider the account in some detail to bring out
the difficulties with characterizing unification.
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consist of three distinct components (Kitcher 1989, pp. 432-34). First, schematic sentences are

obtained by replacing some of the non-logical vocabulary of a sentence with dummy letters:

e.g., a sentence from the “Simple Selection” argument pattern reads “The organisms in G are

descendants of the members of an ancestral population G
∗ who inhabited an environment E”

(Kitcher 1989, p. 444). The second component, filling instructions, tell us how to replace

the dummy variables with names; in this case, the filling instructions specify what names of

species may be substituted for G,G
∗ and so on. Finally, the classification specifies the deductive

relationships between the various schematic sentences included in the argument pattern. The

optimal systematization of our set of beliefs is called the “explanatory store” E(K); an argument

counts as explanatory precisely if it is a member of this set of optimal argument patterns. Kitcher

devotes considerable effort to showing that this account avoids the standard counter-examples to

Hempel’s D-N model of explanation. Kitcher argues, for example, that a pattern explaining the

height of an object in terms of the length of its shadow and the position of the sun has no place

in E(K), whereas a pattern explaining the length of a shadow in terms of an object’s height and

the sun’s position does belong in E(K). Whether Kitcher’s account avoids the counterexamples

to the D-N model is still a subject of active debate, which I will not enter into here; instead

I will focus on the prior question of whether Kitcher provides an adequate account of optimal

systematization.

The best systematization of our beliefs maximizes unifying power, understood as a bal-

ance between three competing virtues: the stringency of the argument patterns, the paucity of

argument patterns, and the breadth of the conclusions derived. Stringency is imposed to avoid

classifying a wide variety of vaguely similar arguments under one pattern with loose filling con-

ditions; Paracelsus’ use of the “microcosm - macrocosm” argument pattern, for example, would



212

have a low ranking in terms of stringency. Unifying power varies directly with the breadth of

conclusions derived, inversely with the number of argument patterns, and directly with the strin-

gency of the patterns. In simple cases where two sets of argument patterns are equally matched

with respect to two of the virtues, it will be clear which to choose based on the third virtue. How-

ever, such examples bear little resemblance to the genuine cases of theory change Kitcher hopes

to analyze. Since judgements of unifying power are the central engine of theory change and sci-

entific progress on Kitcher’s account, he requires a general account of how to measure unifying

power in cases where the comparison requires a more careful balance of the three virtues.

Kitcher’s more precise proposal of judgements of unifying power uses some additional

formal apparatus. A set of argument patterns, U , generates a set of derivations, S, when the

dummy variables in the schematic sentences are filled in with appropriate names as per the filling

instructions. A particular derivation in the set S is acceptable relative to the set of background

beliefs K just in case each step of the derivation is deductively valid, and the premises of the

argument are elements of K . The conclusion set C(S) is the set of statments that occur as

conclusions for some derivation in S (Kitcher 1989, p. 434). Kitcher’s proposed comparison

principle is then:11

Comparison: U has greater unifying power than U
′ if one (or both) of the follow-

ing conditions is met:
(C1) C(S

′
) is a subset of C(S) (not necessarily proper), and there is a one-one map

f : U → U
′ such that for each pattern p in U , p is at least as stringent as f(p), and

either f is an injection, or f is a surjection and there is at least one pattern p in U
such that p is more stringent that f(p);
(C2) C(S

′
) is a proper subset of C(S) and there is a one-one map f : U → U

′ such
that for each p in U , p is at least as stringent as f(p).

11I have corrected an obvious mistake in Kitcher’s original formulation of (C): Kitcher defines the maps
f, f

′ in terms of S, S
′ rather than U, U

′. However, these maps relate argument patterns (the elements of
the sets U, U

′) and not derivations, which are the elements of the sets S, S
′ (Kitcher 1989, pp. 478-79).
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As Kitcher notes, Comparison introduces an asymmetric, transitive relation on sets of argument

patterns satisfying the conditions. Considering (C2) first, the first clause guarantees that U cap-

tures a broader set of conclusions than its competitor U
′. The existence of f implies that the

number of argument patterns in U
′ is greater than or equal to the number in U , and the last

clause requires that each pattern in U is mapped into an equally stringent or less stringent coun-

terpart. Thus (C2) applies when U has the advantage of capturing a broader set of conclusions,

and fares as well as U
′ with regards to the other two virtues. The condition (C1), on the other

hand, applies when U has an advantage with regards to either the number of patterns (when f

is an injection) or stringency (the last clause), and fares as well or better than U
′ with regards to

the other two virtues.12

Rather than providing a general principle applicable to difficult cases, this principle

merely formalizes how to handle the simple cases. Two examples due to Daniel Steel (Steel

2002) illustrate the limitations of this principle. Suppose that U
′ contains a single argument pat-

tern. One would expect that U
′ would lack stringency, lead to a small set of conclusions, or both,

and that this should be reflected in judgements of unifying power. However, both (C1) and (C2)

require the existence of a one-one map f from U to U
′, so neither of these conditions can be met

if U includes more than one argument pattern (as it surely does). Thus Comparison does not

allow one to conclude that U has greater unifying power than U
′, despite the clear intuition that

the latter’s victory in achieving a small number of argument patterns comes at too great a cost.

Similarly, construct a new argument pattern U
′ by simply “tacking on” an argument pattern p to

the orignal set U , such that this pattern leads to the derivation of a new conclusion not included

12Kitcher further clarifies comparisons of stringency by introducing two principles to characterize rel-
ative stringency. Briefly, stringency is reflected in both the “tightness” of the filling instructions and the
“tightness” of the classification of the logical structure of the argument. Since my argument is not directly
related to these principles, I will not discuss them further here.
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in C(S). Again, (C1) and (C2) would both fail since C(S
′
) is not a subset of C(S); but U

′

clearly suffers in comparison to U as a result of adding an epicycle with such slim payoff. These

extreme cases both illustrate that Comparison fails to apply when U fares better on two of the

virtues despite failing in comparison to U
′ with regards to the third. Comparison can be used to

define a strict partial ordering—degree of “unifying power”—on sets of argument patterns simi-

lar enough to satisfy (C1) or (C2), but this ordering does not extend to cases of genuine trade-offs

between competing virtues. In these two simple cases we can clearly order U and U
′ without

the aid of Comparison, but in more complicated cases these judgments would presumably not

be so obvious. Kitcher owes us either an extension of his principle that defines a strict partial

ordering over a broader range of sets of argument patterns, or an argument that such an extension

is unnecessary.

Kitcher introduces an aptly named principle meant to assure that Comparison will be

sufficient for judging unification without such an extension (Kitcher 1989, p. 478):

Optimsim: Let U,U
′ be sets of patterns. Then there is a set of patterns U

∗ such
that:
(a) There are one-one maps f : U

∗ → U , and f
′
: U

∗ → U
′ (injections or surjec-

tions) such that for each pattern p in U
∗, p is at least as stringent as f(p) and at least

as stringent as f
′
(p);

(b) The consequence sets C(S), C(S
′
) are both subsets (though not necessarily

proper) of C(S
∗
)

If this principle holds, then a trade-off between unifying virtues can be avoided by constructing a

set of patterns which maximizes the virtues of the competing sets. Kitcher admits that he does not

know whether this principle, or some more restricted version of it, is true, and offers no argument

in its favor (Kitcher 1989, p. 478). I do not share Kitcher’s optimism. First, in the historical

cases Kitcher ultimately hopes to analyze, this principle would insure that scientists can always
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reconcile two competing approaches without losing the unifying virtues of either competitor.

This is far too strong, and Kitcher does not argue that this has actually happened in any of the

historical cases he discusses. But more fundamentally, in some cases when Comparison does

not apply we have clear intuitions that one set of patterns should be rejected in favor of another.

In both of the simple examples of the previous paragraph, it would be perverse to look for a set

of argument patterns U
∗ combining U and the clearly inferior U

′ rather than simply selecting U

as the more unified set of argument patterns.

Two additional critical points undercut hopes of extending Kitcher’s principle to a more

broadly applicable ordering. First, Kitcher assumes that a given set of scientific ideas can be for-

mulated in terms of a “canonical set” of explanatory patterns. But is it really plausible that, say,

physicists who generally agree about the “content” of non-relativistic quantum mechanics would

all formulate the same Kitcher-style explanatory patterns to systematize the theory? This is not

an idle worry since differences in these formulations would be reflected in differing judgements

of unifying power related to rival theories. In the case of non-relativistic quantum mechan-

ics, would there be a single argument pattern for “One-Dimensional Problems” with dummy

variables allowing different choices for the potential, or more specific patterns for “Potential

Barrier,” “Simple Harmonic Oscillator,” and so on? Syntactical choices of this sort would lead

to an overall paucity or plurality of argument patterns in the canonical set.

The second, more important critical point is that Kitcher’s approach does not provide the

resources to handle cases in which unification is achieved at the cost of introducing conflicts with

other widely accepted theories (cf. Koertge 1992). Copernican astronomy arguably achieved a

more unified description of planetary motion than Ptolemaic astronomy in that, for example, it

accounted for the correlations between the sun’s motion and the motion of the planets without
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requiring independent assumptions relating them. But this “local” reformulation of astronomy

came at the cost of abandoning Aristotelean physics: Copernicus did not provide a replacement

for Aristotelean physics that would apply to a moving Earth, and offered relatively weak ar-

guments intended to mitigate the conflict. Kitcher’s account of unification generally favors the

“globally” more satisfying set of argument patterns, whereas historically local assessments of

the advantages of Copernican astronomy were one of the main attractions of the theory.

In sum, Kitcher’s account is well equipped to handle rational reconstructions of histor-

ical cases by exhibiting the explanatory advantages of successful theories. Yet it flounders in

providing a criterion of unification applicable in judging the merits of competing theories, in

that there is no reason to expect the “principle of optimism” to hold. Retreating from the claim

that unification is the central engine driving the progress of science does not mean that it cannot

play a role in theory choice. In particular, Friedman’s point that unification enhances testability

holds regardless of the difficulties with cashing out any stronger sense of unification in terms of

“reduction of brute facts.” Indeed, in Kitcher’s own application of his “compromise model” of

rationality to the Copernican revolution (Kitcher 1993, pp. 205-211) unifying power is limited

to one among many competing considerations in assessing theories.

6.1.2 Unification in Cosmology

As we saw in Chapter 3, throughout the 70s a number of researchers explored the con-

sequences of combining QFT with cosmology. Given the speculative nature of QFT at high

temperatures, a large range of models was explored with a wide variety of novel consequences.

The discovery of inflation brought about a dramatic shift: research focused on the subset of mod-

els incorporating a scalar field with the right properties to produce inflation. The conviction that
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inflation must be a consequence of the conjunction of QFT and cosmology seems to be based on

two distinct arguments. First, in Guth’s original model inflation was driven by the Higgs field

responsible for symmetry breaking in an SU(5) GUT, and the properties of the Higgs field and

its potential appeared to be “natural” in the context of this theory. Thus inflation seemed to be a

straightforward consequence of high energy physics applied to cosmology. Second, inflationary

cosmology ties together several large scale features of the universe which otherwise bear no rela-

tion to each other. In standard big bang cosmology, the uniformity of the universe on large scales,

the flatness of the universe, and the presence of small scale fluctuations in the density of matter

are all independent features of cosmological models. One can construct cosmological models

with large scale uniformity but a different spectrum of small scale density perturbations. Both

are features of initial conditions, and can be “tuned” virtually at will. Thus inflation apparently

achieves an important unification in the description of the early universe.

Balanced against this case in favor of inflation are several fundamental obstacles. Roughly

put, several critics of inflation suspect that conceptual conflicts hidden in the loose amalgam of

particle physics and general relativity making up the theory may undercut its positive results.

Early calculations of the temperature dependence of the effective potential (see Chapter 3) were

carried out in standard (finite temperature) QFT without taking cosmological effects—other than

the increase of temperature—into account at all. This could hardly be called a “unification,” even

in the sense of a conjunction of theories. Further work incorporated general relativistic effects

by replacing the flat background Minkowski spacetime of traditional QFT with one of the dy-

namically evolving FLRW models; this approach is a 0
th order approximation to a full theory

of quantum gravity in that field theory is formulated over a fixed, non-dynamical background

spacetime. Early universe cosmologists cannot rest easy with only a 0
th order approximation,
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since inflation results from including the inflaton field as a source in Einstein’s field equations.

The semi-classical approximation (a 1
st order approximation to quantum gravity, so to speak)

incorporates the effect of the quantum fields on the spacetime metric by replacing the classical

stress-energy tensor Tab with the expectation value 〈φ|Tab|φ〉 of the (renormalized) stress-energy

tensor for the quantum fields.13 In other words, in the semi-classical approximation one treats the

matter fields quantum mechanically and the metric classically. Aside from more general reasons

for dissatisfaction with such a “half-and-half” theory (Callender and Huggett 2001; Arageorgis

1995), there are several problems related to inflation which depend upon strong assumptions

regarding the complete theory.

The first problem relates to the onset of inflation and the so-called “cosmic no-hair”

conjecture. The no-hair theorems aim to show that a stage of exponential expansion erases all

the wrinkles of the early universe; more precisely, one hopes to show that a fairly general initial

state rapidly approaches a (locally) de Sitter solution undergoing inflationary expansion (see

Appendix A for a definition of “locally de Sitter”). The intuition behind these theorems is that

all contributions to the energy density other than Λ decay with time in an expanding universe,

so eventually Λ should dominate the expansion. With a convincing no-hair theorem in hand, an

inflationary cosmologist could ignore the details regarding inflation’s onset: regardless of the

precise characteristics of the initial conditions or how inflation begins, the output would reliably

be an inflating universe.

13Inflation is often treated as the purely classical dynamics of a scalar field (see, e.g., Kolb and Turner
1990, Chapter 8) with a classical Tab; however, this only accounts for the first term of a perturbation
expansion in powers of the coupling constant. The higher order quantum corrections will be small if the
inflaton field is only weakly self-coupled and weakly coupled to other fields, and in fact the observational
constraint on the magnitude of post-inflationary density perturbations implies that the inflaton self cou-
pling is on the order of 10

−12. Although the weakness of the inflaton’s self-coupling justifies neglecting
higher order contributions, this is one of the main “fine-tuning” problems of inflation.
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A no-hair theorem requires demonstrating two results: first, that an effective cosmolog-

ical constant gets rid of anisotropies and inhomogeneities, and second, that for generic (or a

suitably large set of) initial conditions an inflationary stage will occur which mimics a cosmo-

logical constant term. Attempts to prove the second claim more clearly illustrate the limitations

of a “half-and-half” theory. Proofs of the first claim (briefly reviewed in Appendix A.5) involve

only classical general relativity (in essence, determining the effect of a transient Λ), but the argu-

ment that an early universe phase transition produces such an effective Λ relies on a combination

of flat space QFT with general relativity. Recall the familiar stress-energy tensor for a scalar

field,

Tab = ∇aφ∇bφ − 1

2
gabg

cd∇c∇dφ − gabV (φ). (6.1)

During slow roll in the “new inflation” scenario, the inflaton mimics Λ only if all but the last term

are neglible, so that Tab ≈ −gabV (φ). But approximate mimicry may not be sufficient to relate

inflation to the proofs of the first claim, which depend on imposing energy conditions which do

not necessarily hold if the gradient terms are non-zero.14 In addition, in order for inflation to

occur the gradient terms must be negligible in a region larger than the horizon radius at the time

of inflation’s onset. In other words, the picture of an inflationary stage emerging from a chaotic,

inhomogeneous initial state is inaccurate; the inflaton field and spacetime must be homogeneous

in a super-horizon patch to produce an inflationary stage.15 A more fundamental problems arises

14The no-hair theorems of Wald and others apply if the strong and dominant energy conditions hold for
Tab + V (φ)gab (i.e., stress-energy tensor excluding Λ). This assumption is essential to the theorems, and
the same conclusion does not follow if it is dropped (see Goldwirth and Piran 1992, for discussion and
references).

15Both of these points have been emphasized in the literature; see, in particular, Vachaspati and Trod-
den (2000) and Goldwirth and Piran (1992) for more detailed discussions. Note, however, that similar
complaints do not apply to Linde’s chaotic inflation—and the hope of avoiding such requirements seems
to be one of his main motivations in developing chaotic inflation.
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in justifying the use of the effective potential V (φ) calculated using flat space QFT for very

general initial conditions. Extrapolations are expected to break down at the Planck scale due to

gravitational effects, but even at sub-Planckian energy densities several effects may invalidate

the flat space calculations. In anisotropic models the anisotropy energy density may reach the

Planck scale well after the Planck time, and more generally negative curvature can suppress

the expected phase transition.16 In practice, detailed calculations in various inflationary models

usually avoid these problems by focusing on the later stages of inflation, when the field theory

calculations can be performed in a background de Sitter spacetime. But the no-hair theorems

play a crucial role in justifying this approach, and I see no way to prove the second component

of a no-hair theorem without some assurance that gravitational effects do not invalidate the flat

space effective potential. The only alternative is to abandon any pretense of calculating rather

than simply stipulating the form of the potential.

The second general problem with combining QFT and GTR important to inflationary

cosmology has been called a crisis in contemporary physics by a number of theorists (includ-

ing, prominently, Weinberg 1989). The problem goes under the name “the cosmological constant

problem”; the main issue is how to understand a stress-energy tensor in GTR incorporating quan-

tum fields as sources.17 Calculations of the vacuum energy density in quantum field theory yield

incredible results: according to the calculation reviewed in Appendix B.2, the vacuum energy

density of the free electromagnetic field is 〈ρvac〉 ≈ 10
46

erg/cm
3. For the sake of comparison,

this is roughly 10 orders of magnitude greater than the mass-energy density of a neutron star

16See, e.g., Hu (1986) for an early criticism of the reliance on flat space QFT. Hu argues that curvature
anisotropies and other dynamical effects render the usual effective potential inapplicable to the general
case of a curved spacetime.

17I have benefitted from conversations with John Earman regarding this topic; cf. his Earman (2001). I
am also drawing on the very careful, comprehensive discussion in Rugh and Zinkernagel (2001).



221

(roughly 10
36

erg/cm
3)! Why treat this vacuum energy as anything other than an artifact of the

formalism, to be gotten rid of via some renormalization procedure? Physicists have often argued

that the Casimir effect demonstrates the reality of zero-point energy (Weinberg 1989, p. 3, for

example). The availability of alternative derivations of the Casimir effect which do not appeal

to vacuum energy density renders this argument inconclusive.18 In these alternative derivations,

Casimir’s calculation of the force between two attracting plates (treated as a consequence of the

lowering of the vacuum energy density between the plates) is replaced with a calculation in terms

of the source fields of the plates themselves. Although I will not pursue the question further here,

several philosophers have begun exploring the viability of interpretations of QFT which do away

with vacuum energy density. Almost all of the extensive evidence supporting QFT has no direct

bearing on this question, since the vacuum energy is irrelevant to the calculation of the S-matrix

amplitudes compared to experimental results.

The vacuum energy leads to a crisis when 〈ρvac〉 is included as a source term in EFE. In

flat space QFT, the form of the stress-energy tensor for the vacuum follows from the Poincaré

invariance of the vacuum state |0〉. The physical properties of the vacuum state are also invariant;

in particular, 〈0|Tab|0〉 is Poincaré invariant. Since the only Poincaré invariant rank two tensor

is the Minkowski metric, 〈0|Tab|0〉 = constant × ηab, which is the same form as a cosmologi-

cal constant term. This argument is usually stated in one line, and immediately generalized to

GTR (perhaps with an invocation of the ηab → gab, normal derivative → covariant derivative

“rule”). If this generalization holds, then the vacuum energy density should lead to an effective

cosmological constant; a comparison between the vacuum energy density calculated in QFT and

observational limits on Λ reveals an incredible discrepancy of some 120 orders of magnitude!

18See, in particular, the discussion in Rugh and Zinkernagel (2001).
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If this stunning conflict with observation does not provide enough evidence that some-

thing has gone terribly wrong, two important theoretical difficulties undercut this generalization

of the flat space properties of the vacuum to GTR. First, general relativistic spacetimes generally

lack the symmetries used to identify the vacuum state and to constrain the form of its stress-

energy tensor. In stationary, globally hyperbolic spacetimes the construction of QFT on curved

spacetimes is similar to that on Minkowski spacetime, in that a unique vacuum state can still be

identified; but uniqueness fails for more general spacetimes.19 Since the FLRW models (and pre-

sumably whatever model describes the universe) are not stationary, the “vacuum state” cannot be

uniquely identified using spacetime symmetries. Second, even defining 〈Tab〉 and including it as

a source term in QFT on curved spacetimes requires a regularization procedure. Trying to define

a “quantum” Tab by replacing the classical φ’s in eqn. (6.1) with quantum fields yields nonsense:

the quantum fields are operator-valued distributions and Tab includes products of these fields, but

there is no way to define a product of distributions. Thus the quadratic terms in Tab give rise to

divergences; all of the various formal methods of “regularizing” 〈Tab〉 extract a finite, reasonable

quantity from these divergent expressions by subtracting off the vacuum energy (see Birrell and

Davies 1982, Chapter 6, for a review of these techniques). The axiomatic approach developed

by Wald (see Wald 1994, §4.6) includes an axiom that 〈Tab〉 = 0 in Minkowski spacetime, and

in more general spacetimes 〈Tab〉 is calculated using a point-splitting prescription which sub-

tracts off a term roughly corresponding to the vacuum energy.20 The physicists worried about

19A stationary spacetime possesses a timelike Killing field, i.e. a vector field ξ
a such that ∇aξb +

∇bξa = 0. Very roughly, the timelike Killing field can be used to uniquely fix the subspace of positive
frequency solutions to the Klein-Gordon equation used in constructing the Hilbert space of states, and
the vacuum state in the associated Fock space is the ground state of the Hamiltonian. For details of the
construction of QFT in a stationary spacetime, see Wald (1994), §4.3.

20More precisely, the quadratic terms are defined using the “point-splitting prescription,” 〈φ 2
(x)〉 :=

limx→x′ [〈φ(x)φ(x
′
)〉 −H(x, x

′
)]; in Minkowski spacetime, H(x, x

′
) is given by 〈0|φ(x)φ(x

′
)|0〉 but in

general spacetimes H(x, x
′
) is constructed so that the axioms are satisfied.
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the cosmological constant problem apparently think of the vacuum energy density as something

other than a “meaningless infinite quantity” (Birrell and Davies 1982, p. 150); but it is far from

clear how to even define 〈Tab〉, or incorporate it as a source term in EFE, without employing a

regularization method that treats it as such.

The cosmological constant problem indicates that there is still much that we do not un-

derstand regarding the quantum vacuum. This problem has also been described as the Achilles

heel of inflationary cosmology; in his review of the first workshop devoted to inflation, Frank

Wilczek commented (cf. Kolb and Turner 1990, p. 314):

It is surely an act of cosmic chutzpah to use this dismal theoretical failure [in un-
derstanding Λ] as a base for erecting theoretical superstructures, but of course this
is exactly what is done in current inflationary models (Hawking et al. 1983, p. 476,
original emphasis).

It is possible that setting the overall cosmological constant to zero (via some regularization pro-

cedure, or through the introduction of new physics) will not eliminate the shifts in vacuum energy

which are thought to produce an inflationary stage. However, it is also possible that reconcep-

tualizing the quantum vacuum and the renormalized stress-energy tensor will leave no room for

Λ—or for an effective Λ driving an inflationary stage.

The third general problem is the enduring mystery: who is the inflaton? Following the

failure of Guth’s model, the inflaton has been identified with a number of different scalar fields

postulated to exist in extensions of the Standard Model. As described in more detail in Chapters

4 and 7, the observed magnitude of density perturbations places tight constraints on the inflaton

potential and gave rise to a new fine-tuning problem, namely why does the inflaton potential have

these features? One response is to hope that the final theory will incorporate a scalar field which

“naturally” has the right features to drive inflation. There are currently a plethora of models (over
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50!) which embed inflation in various underlying particle physics theories, and the hope that one

of these will emerge as the canonical realization of inflation is optimistic, but not unreasonable.

6.2 Robustness and Causality

Salmon (1998) includes an interesting discussion of the abuse of (alleged) causal princi-

ples by astrophysicists. The case involves inferring the size of an object (such as a quasar) from

observed variations in its spectra or luminosity: since the early 60s, astrophysicists have applied

the “c∆t” criterion to determine the size of a variable source. For a source varying on a time

scale ∆t, one infers that the size of the object cannot be larger than c∆t, on the grounds that

the variability must be due to a signal propagating through the emitting object at a speed ≤ c.

The c∆t criterion is repeatedly used in this way (Salmon lists several examples), and it is often

presented as a direct consequence of special relativity.

Despite its popularity, this argument is egregiously false. One of the simplest counterex-

amples involves a large spherical shell of gas surrounding a compact source. Signals (such as a

burst of radiation) from the central source could stimulate emission from the shell with a very

short period of variation; for sufficiently small ∆t the size of the sphere inferred from the c∆t

criteria is much smaller than the actual sphere. But there is clearly no conflict with special (or

general) relativity: the signal propagates outward from the central source at or below the speed

of light. It turns out that the currently accepted models of quasars do satisfy the c∆t criterion.

However, as Salmon argues, appeals to “causal” arguments obscure the real issues involved in

assessing competing models of quasars and historically limited research to a class of models

which satisfy the (unjustified) criterion. Other considerations (such as whether the model can
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reproduce the spectrum of a quasar), rather than any straightforward causal argument, led to the

abandonment of various models which also violated the c∆t criterion.

Presentations of inflation often include a “causal argument” in its favor: an inflationary

stage is the only causal mechanism which solves the horizon problem and produces appropriate

density perturbations. Salmon’s case illustrates that scientists are prone to misrepresent plausi-

bility arguments as (presumably more authoritative) causality arguments, and below I will argue

that this is true for the case of inflation as well. The causal arguments made by inflationary

cosmologists do not involve an obvious fallacy, as in the case of the c∆t criterion, but dis-

entangling the implications of the presence of particle horizons in the early universe requires

care (cf. Earman 1995). The horizon problem is often also called the “causality problem” or

the “causality paradox” based on the intuition that horizons prevent causal explanations of the

early universe’s uniformity. In the next section I formulate and briefly discuss the problems with

Reichenbach’s principle of the common cause, before concluding that an alternative principle

more clearly illustrates the intuitions underlying the horizon problem. As I discuss in §6.2.2,

the horizon problem stems from a conflict between the assumption that physical laws do not

place constraints on relatively spacelike events and the highly correlated, global uniformity of

the early universe revealed by the CMBR observations. In the absence of lawlike constraints on

initial data, cosmological models can apparently only accomodate this uniformity by stipulating

that “special” initial conditions held. Cosmologists generally favor robust explanations which

do not require such carefully set initial conditions, and in §6.2.3 I will formulate a criterion for

“robustness” of explanation and examine when this criterion fails to apply. In particular, infla-

tion offers a more robust explanation of the early universe’s uniformity only if two important

assumptions about Planck-scale physics hold true: first, that there are no lawlike constraints on
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initial data which render inflation superfluous, and second, that high energy physics “naturally”

incorporates a scalar field with a potential appropriate to drive inflation.

6.2.1 Reichenbach’s Principle of the Common Cause

Reichenbach was the first to give a precise formulation of the intuition that a common

cause underlies improbable correlations between events. For two simultaneous random events

A and B with a positive correlation, i.e. Pr(A&B) > Pr(A)Pr(B), Reichenbach’s principle

asserts that there must exist a common cause C in the past such that (Reichenbach 1956, pp.

158-59):21

Pr(A ∧ B|C) = Pr(A|C)Pr(B|C) (6.2)

Pr(A ∧ B|¬C) = Pr(A|¬C)Pr(B|¬C) (6.3)

Pr(A|C) > Pr(A|¬C) and Pr(B|C) > Pr(B|¬C) (6.4)

Together these equations imply that Pr(A ∧ B) > Pr(A)Pr(B). The first two equations show

that the common cause “screens off” the correlation; the first equation implies that Pr(B|C) =

Pr(B|A ∧ C), which more clearly expresses the fact that C renders A statistically irrelevant

to B (as does ¬C). The final equation merely defines “cause” as that which makes its effect

more likely than it would be in C’s absence (otherwise, the PCC is symmetric between C and

¬C). Reichenbach attributed physical content to the PCC in two senses: first, he thought that

it clarified the concept of causation in an indeterministic universe, and second, he thought that

21The conditional probability is defined as Pr(A|B) = Pr(A ∧ B)/Pr(B), and I will assume that
none of the probabilities are zero. Here I am assuming that Reichenbach intended to rule out direct causal
links between A and B; alternatively, sometimes the PCC is formulated as stating that either A and B are
directly causally linked, or there is a common cause C.
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it would provide a way to distinguish the past from the future since C lies to the past of A,B.

The principle has also been presented as a methodological “categorical imperative”: observed

correlations between simultaneous events must be explained in terms of a common cause, and a

hypothesis incorporating these common causes (even if they are unobservable) is to be preferred

to a “separate cause” hypothesis. Every one of these claims has been the source of vigorous

debate (see, for example Arntzenius 1993, 1999; Salmon 1984; Sober 1994), but I will focus

mainly on the methodological issues in the following.

Before turning to criticisms of the PCC, I will first introduce some necessary refinements

of the principle. As formulated above the PCC applies to events which do or do not occur,

but it can be generalized to (discrete or continuous) observables. On the assumption that the

instantaneous physical state of the system determines whether or not an event occurs, an event

is just a partition of the phase space Γ of the system into two cells (“C occurs” and “C does not

occur”). But a more general property—such as whether an observable A takes a value lying in

some interval ∆ ⊂ R—can also be uniquely associated with a subset of Γ.22 Following Uffink

(1999), the PCC modified to cover such observables requires that for n correlated quantities

{Ai}, there exists a set of m mutually exclusive quantities {Ci} such that the joint distribution

factorizes:23

Pr(A1 ∧ A2... ∧ An) =
m∑

i=1

Pr(A1|Ci)...P r(An|Ci)Pr(Ci) (6.5)

22In classical mechanics the observables are real-valued functions on phase space fA : Γ → R, and the
subset of phase space corresponding to a measured value of A lying in the interval ∆ is just the inverse
image (f−1

A
(∆)).

23This formulation treats {Ci} neutrally as causal factors, but clearly one can add the analogues of the
third equation above to stipulate that they deserve to be called causes.



228

This reformulation saves the PCC from counterexamples where a single event C does not screen

off the correlated events, even though a combination of events (or more generally, an observable)

does. A second refinement is to associate the observables with local physical states in regions of

spacetime: suppose A represents the physical state in a spacetime region U and B the state in

V , then C should represent a physical state associated with the region lying in the overlap of the

past light cones of the two regions, i.e. within J
−
(V ) ∩ J

−
(U) (the region from which a signal

travelling at or below the speed of light could reach both U and V , see Appendix A.4).

The PCC clearly fails to hold as a methodological principle of unrestricted generality. In

non-relativistic quantum mechanics, states such as the singlet state of two spin-1/2 particles ex-

hibit correlations between spacelike-separated events (e.g., measurements of the spins of the two

particles). These correlations generally cannot be screened off by local common causes which

reproduce quantum statistics (see, for example Elby 1992). These features do not disappear in

QFT: spacelike correlations without a prior screener-off are endemic in QFT, despite the fact that

the theory is constructed to satisfy relativistic causality constraints (i.e., Lorentz invariance).

Defenders of the PCC such as Salmon have claimed that it may still apply in cases unaf-

fected by quantum mechanical weirdness, but I will briefly review three cases in which even this

more modest position does not hold. The first case involves situations where a “separate cause”

explanation seems much more plausible; for example, the correlation between bread prices in

Britain and the level of sea water in Venice (which have both been increasing monotonically)

does not seem to cry out for a common cause explanation (this example is due to Sober 1994,

2001). More interesting examples drawn from evolutionary biology illustrate this point (Sober
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1994): in ongoing debates regarding phylogenetic inferences based on similarities and differ-

ences between species, correlation between traits is not taken as decisive evidence for propin-

quity of descent. The comparison between a “common cause” explanation of a similar trait and

a “separate cause” explanation is based on a number of background assumptions, and the PCC

has not been used in this debate as a methodological silver bullet to kill the latter option. Sober

argues that whatever force the PCC has derives from the more general methodological claim,

the “likelihood principle”, which states that evidence E favors a “common cause” theory Tcc

over a “separate cause” theory when Pr(E|Tcc) > Pr(E|Tsc). The PCC appears to have gen-

eral validity only because its defenders focus on cases where Tcc has higher probability than a

competing theory that postulates separate causes.

Second, in a deterministic universe correlations are screened off by quantities both to the

past and to the future of the events to be explained (Arntzenius 1990). In other words, the PCC

fails if we allow any subspace of Γ to count as a potential screener off, since there will in general

be screening off “common effects”.24 Without some restriction on what counts as a common

cause (or effect), we will count very complicated properties as common causes; and this appears

to violate the spirit if not the letter of the PCC. For example, in a system of gas molecules

governed by Newtonian mechanics, the screener off for a collision between two individual gas

molecules at a specific time will generally be a complicated fact involving the positions and

momenta of a large number of other molecules. Arntzenius (1999) discusses and ultimately

rejects two ways of refining the notion of common cause so that some version of the PCC holds:

24Uffink (1999) points out this conclusion only follows if we take the PCC to require the absence of a
screening off common effect; if we drop this additional requirement, Arntzenius’s argument shows that a
temporally symmetric version of the PCC trivially holds in a determinisitic universe. Here “determinis-
tic” means that the complete instantaneous state of the universe at any time uniquely fixes the complete
instantaneous state at any other time.
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first, to require that they correspond to macroscopic quantities or, second, to local quantities. The

first cannot hold if macroscopic quantities have microscopic common causes. The second option

is more appealing (aside from conflicts with quantum mechanics), but there is a general class

of counterexamples: equilibrium correlations. Systems in thermodynamic equilibrium generally

exhibit correlated quantities (such as temperature in different regions) which are not directly

causally related, and are also not determined by some local quantity at an earlier time.

Third, modern physics incorporates several laws which restrict quantities in relatively

spacelike regions (cf. Arntzenius 1999). Two of Maxwell’s equations are hyperbolic differential

equations governing the evolution of the fields, but the other two are elliptic constraint equations

(∇ · B = 0 and ∇ · E = 4πρ, where ρ is the charge density) which must be satisfied by initial

data specified on a spacelike Cauchy surface. The second of these differential equations can be

integrated over a finite region to give Gauss’s law, which fixes the E field on a surface in terms

of the charge enclosed by the surface—evaluated “instantaneously” on a spacelike slice. These

“laws of co-existence” do not conflict with relativity, but since they lead to correlated quantities

without prior screener-offs they violate the PCC.

A very different objection to applying the PCC in the relativistic context arises from its

exclusive focus on the common causal past of two regions (cf. Earman 1995). Consider two

relatively spacelike regions S, S
′ with overlapping causal pasts (I will call this overlap O =

J
−
(S) ∩ J

−
(S

′
) 6= ∅). The PCC would have us look to this region O to find the cause of any

correlations between the two regions. However, in general conditions outside of O will have an

influence on the states in S, S
′. Consider the intersection of O with a Cauchy surface Σ (call this

U ), and define V to be the intersection of the union of the causal pasts of S, S
′ with Σ. In general

S and S
′ are not subsets of the future domain of dependence of U , D

+
(U). D

+
(U) is the set
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of points p such that all past-directed, inextendible timelike or null curves through p intersect

U ; more intuitively, all of the causal influences acting on the region D
+
(U) are reflected in the

initial conditions set on the surface U , since by definition no causal curve can reach this region

without intersecting U . Perhaps in some situations one could vindicate the PCC by showing

that holding conditions fixed on V − U while varying those on U does indeed yield the desired

correlations, but in general, since S and S
′ are subsets of D

+
(V ), one would expect that the

conditions on V should be taken into account in considering the states in S, S
′.

Penrose and Percival (1962) formulated a principle called the “law of conditional inde-

pendence” (LCI) that avoids many of the shortcomings of Reichenbach’s PCC.25 The LCI is

meant to capture the idea that a completely isolated system should exhibit no correlations with

other regions of the universe. It is analogous to the Sommerfeld radiation condition, which re-

quires that the contribution of source-free radiation to the surface integral in the Kirchoff integral

representation of a solution to Maxwell’s field equations vanishes as the region of integration is

extended to infinity.26 Imposing this condition eliminates “source-free” radiation traced to cor-

relations at infinity rather than the motion of charged particles. Similarly, the LCI rules out

correlations due to interactions coming in from infinity, and like the Sommerfeld condition the

LCI is explicitly time-asymmetric. Define C to be any region that divides the union of the causal

pasts of S and S
′ (i.e., J

−
(S) ∪ J

−
(S

′
)) into two pieces, one containing S and the other S

′

(see Figure 6.1 for an example of such a region).27 Penrose and Percival (1962) then require

25Penrose and Percival (1962) cite Reichenbach’s PCC along with his analysis of branch systems as
one of the motivations for their work. This interesting proposal has been overlooked by philosophers of
science until very recently; Uffink (1999) corrects this trend by clearly emphasizing the advantages of the
LCI over other formulations of causal principles (cf. Arntzenius 1999).

26See, in particular, Ellis and Sciama (1972) for a clear discussion of the Sommerfeld radiation condi-
tion in the general context of a scalar wave equation in GTR.

27Recall that any region S is a subset of J
−

(S).
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S S’

C

Fig. 6.1 The LCI requires that all correlations in the regions S, S
′ are screened off by completely specify-

ing the state on a region such as C above, which divides J
−

(S) ∪ J
−

(S
′
) into two pieces, one including

S and the other S
′.

that completely specifying the physical state in this region (labeling the states with lower-case

letters, so the state in C is c) screens off all correlations between the physical states s, s
′ in S, S

′,

i.e. Pr(s ∧ s
′|c) = Pr(s|c)Pr(s

′|c). Influences coming in “from infinity” are presumed to be

uncorrelated, so any correlations due to events in the common past of S, S
′ must be registered in

the region C .

The LCI is much more modest than Reichenbach’s PCC. As Penrose and Percival (1962)

acknowledge, this principle forsakes any attempt to locate specific common causes for the cor-

relations between the states in these two regions, and in this sense the LCI is weaker than Re-

ichenbach’s PCC. But by focusing on the physical state of the entire region C (one of many such

regions), the LCI avoids difficulties with specifying which partitions of the state space count as

legitimate common causes and there is also no risk of incompletely specifying causal factors. In

the next section I will use the LCI as a diagnostic in assessing the horizon problem.
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Before turning to that task, however, I should bring out one of the further consequences

of the line of thought above. I have briefly reviewed cases above in which the PCC and simi-

lar causal principles do not hold, in order to show that these principles should not be taken as

normative methodological principles of general scope. Approaching the subject from the oppo-

site direction, under what conditions does the PCC or a variant of it hold? Although I will not

pursue the idea further here, putting the question in this way suggests that causation as character-

ized by the PCC is a feature of systems sharing specific statistical regularities. So, for example,

correlations that arise among the components of a system with an initially “chaotic” state and

uncorrelated external causal influences would be required to have a common cause. If some-

thing along these lines can be made precise (see Arntzenius 1999, and references therein to the

extensive causal modeling literature), then the question of the applicability of causal principles

reduces to that of whether the appropriate statistical features hold for a given system.

6.2.2 Causality in the Early Universe

The most widely discussed fine-tuning problem in contemporary cosmology, the horizon

problem, arises due to an apparent conflict between the presence of horizons in standard cosmo-

logical models and the striking uniformity of the microwave background radiation. The problem

can be put succinctly in terms of two different horizon distances (see Appendix A.3 for more

detail). In relativistic cosmology horizons measure the maximum distance travelled by a light

signal during a fixed time period. The visual horizon dvh measures the distance to the farthest

objects visible to us by light emitted after td, the decoupling time when the universe became

transparent. The primeval particle horizon dpph measures the maximum distance from which

light emitted “at the singularity” (in the limit as t → 0) can reach a point by the time td. For the



234

standard FLRW models, the integrals defining these distances converge, yielding finite quantities

obeying the following inequality:

dpph << dvh (6.6)

As a consequence, if the FLRW models accurately model the early universe the snapshot of the

CMBR encompasses several regions which lie beyond each other’s primeval particle horizons.

In particular, the CMBR emitted from points in the sky with an angular separation of more than

60
◦ comes from two regions whose past light cones do not overlap (see 2.1). Antipodal points in

the sky are separated by a distance of roughly 75 dpph at td (Blau and Guth 1987, pp. 534-535).

Without a trans-horizon smoothing mechanism, the observed uniformity of the CMBR requires

that all of these causally disconnected regions mysteriously have approximately the same state.

The horizon problem is often more aptly called the “smoothness” or “uniformity” problem: the

difficulty is not that particle horizons exist, but that their existence seems to be incompatible with

observed uniformity.

This incompatibility is typically characterized in probabilistic terms: the standard cos-

mological models can accomodate uniformity, but it must be stipulated to hold as an incredibly

improbable, contingent initial condition. Assume for the moment that the FLRW models accu-

rately describe the early universe, so that there are regions S, S
′ ⊂ Σtd

(where Σtd
is the surface

of last scattering) whose past light cones do not overlap. We saw in the last section that the

LCI enforces the intuitive requirement that “influences from infinity” should be uncorrelated;

Penrose and Percival (1962) further note that the “LCI can be derived from the axiom that all

spatially separated regions become uncorrelated in the limit t → +0” (p. 614) in a cosmological

model with a singularity at t = 0. For regions beyond each other’s particle horizons, taking



235

the limit is unnecessary: the physical states in such regions must be uncorrelated for the LCI

to hold. The LCI is based on the idea that local physical laws do not place constraints on the

physical states associated with relatively spacelike regions. One might further require that any

correlations among the field quantities in spatially separated regions should be contingent, in the

sense that the field quantities in region S can take a variety of values even if those in S
′ remain

fixed. Formally, call correlations between two relatively spacelike, open regions S, S
′ contingent

if and only if given two cosmological models M= (M, gab, Tab) and M′
= (M

′
, g

′
ab

, T
′
ab

) dif-

fering in the two regions (M|S 6=M′|S and M|S′ 6=M′|S′), one may always construct a third

model M′′
= (M

′
, g

′
ab

, T
′
ab

) such that M′′|S =M|S and M′′|S′ =M′|S′ . For contingent cor-

relations the fact that S and S
′ have the same features in a particular model depends upon the

initial conditions rather than upon the laws of the theory. On the other hand, if no model M ′′

exists then the spacelike correlations are lawlike rather than contingent, since “wiggling” the

field quantities in one region is incompatible with keeping the features of the other region fixed.

The LCI demands that there are no lawlike correlations in this sense. Without such lawlike cor-

relations, the uniformity of the early universe apparently results from initial conditions rather

than subsequent dynamical evolution. As we saw in Chapters 3 and 4 above, cosmologists have

not been satisfied with this need for special (uniform) initial conditions since they are apparently

incredibly improbable.

Whatever the intuitive force of the LCI, a number of physical theories do incorporate

lawlike constraints on relatively spacelike regions.28 We have already seen one example of

28Earman (1987a) argues that the notion of locality introduced in the previous paragraph—equivalent to
his (L9)—has remarkably little connection with the other ten definitions of locality he offers. Maxwell’s
equations satisfy every other notion of locality, and yet the constraint equations run afoul of (L9) and the
PCC. I agree with Earman that this reflects a shortcoming of the PCC, in that it mistakenly diagnoses
Maxwell’s equations as exhibiting a form of non-locality.
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this in the previous section—Maxwell’s equations; general relativity also includes initial value

constraints in close analogy with the electromagnetic case (Ellis and Sciama 1972; Wald 1984).

Wald regards the neglect of possible non-local correlations as a serious oversight, and concludes

that “it would be rather surprising if the existence of correlations beyond the horizon did not

play an important role in accounting for some basic phenomena occuring in the early universe”

(Wald 1993, p. 224). Wald’s argument focuses on lawlike correlations present in relativistic QFT

rather than classical physics: as a consquence of the Reeh-Schlieder theorem, in the vacuum

state there are correlated elements A1, A2 of the local algebras of observables A1,A2 associated

with the regions O1, O2 no matter how widely separated these regions are.29 Assuming that the

Reeh-Schlieder theorem generalizes to QFT on curved spacetimes, the question is then whether

such spacelike correlations have any impact on calculations, such as estimates of monopole

production, that typically neglect them.

Although these cases illustrate that the LCI should be modified to allow for lawlike con-

straints, a wide variety of initial data is still compatible with the constraint equations of the

coupled Einstein-Maxwell field equations—including spacetimes which are not as smooth as

the observed universe. Wald admits that the small correlation he calculates in a specific case

would probably have a negligible effect on processes in the early universe. Constraints on rela-

tively spacelike correlations based on well-established physical theories probably do not provide

a strong enough restriction on the initial data to produce a uniform initial state. However, several

speculative proposals for Planck scale physics, including Penrose’s Weyl Curvature Hypothesis,

quantum cosmology, and the “ekpyrotic” scenario (all discussed briefly in Section 5.4 above)

29
A1 and A2 are correlated in a state ξ if 〈ξ|A1A2|ξ〉 6= 〈ξ|A1|ξ〉〈ξ|A2|ξ〉. See Streater and Wightman

(1964, Chapter 4) for a discussion and proof of the Reeh-Schlieder theorem.
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provide such constraints. Imposing the LCI outright is in essence a blanket rejection of all three

lines of research.

Returning to the question of the probability of the initial state, cosmologists from Misner

onward have argued that nearly exact uniformity is intuitively improbable: even though the space

of solutions of Einstein’s field equations is not well understood, FLRW models can be singled

out due to their high degree of symmetry. I have discussed the difficulties with bolstering these

intuitions with precise measure theoretic results above 5.4.1, but here I want to briefly focus

on the connection with horizons. Most cosmologists have laid the blame for the improbability

of the required initial state on the presence of horizons; consequently, dynamical solutions to

the horizon or uniformity problem have focused on radically altering the causal structure of

the early universe so that the sources of the CMBR can be in causal contact. Earman (1995,

pp. 144-145) has emphasized an important point usually glossed over in this argument: in

order to justify laying the blame on the presence of horizons, one would need to show that

among the cosmological models which start with a big bang and reach a uniform state quickly

enough there is no open subset of models with particle horizons. A result along these lines would

justify linking the improbability of a uniform initial state with the presence of particle horizons;

otherwise, one may treat the improbability of the initial state as a general problem with the big

bang model having nothing to do with horizons (as Penrose 1979 does). Granting the presumed

linkage between improbability and the presence of horizons, there are several different ways

to modify the FLRW models to completely get rid of particle horizons: horizons are absent

in compact cosmological models with topological identifications, and modifications of Planck
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scale physics can also alter the horizon structure.30 But as we saw in Part I, the dominant research

program in early universe cosmology, inflation, does not completely eliminate horizons; instead,

sufficient inflation makes causal interactions between sources of the CMBR possible due to an

overlap of their past light cones.

While inflation clearly satisfies a necessary condition for a dynamical explanation of

uniformity, it is far less clear that inflation is sufficient to produce uniformity. The first is the

question of whether causal horizons accurately delimit the range of local causal interactions.

There are two reasons to suspect that the horizon does not accurately measure the limits of causal

interactions: as noted by Ellis and Stoeger (1988) and others, the particle horizon is simply the

wrong horizon, and the appropriate horizon distance is an upper limit which may not be reached

in realistic physical models. Regarding the first point, eqn. (A.16) gives the maximal proper

distance over which light propagates from r0 = 0 in a time interval ∆t = t0 − te. Suppose,

for example, that on this definition a light signal emitted from particle A at te reaches particle

B within ∆t. It does not follow that B can return a signal to A—i.e., in some solutions (such as

the exponentially expanding de Sitter solution during inflation) a return light signal emitted by

B at t0 cannot reach A.31 Thus, the fact that A and B lie within each other’s horizons does not

guarantee the possibility of “interaction” in the sense of signals being exchanged between A and

30The various proposals are discussed in more detail in Chapters 3 and 4 above. Note that the integral
defining the particle horizon (A.17) diverges if a(t) ∝ t

n with n ≥ 1; several of the proposals insure that
the integral diverges (and thereby eliminate the horizons) by suggesting new physics which would lead to
evolution of the scale factor of this type.

31This point motivated Patzelt (1990)’s introduction of the interaction horizon (cf. Ellis and Stoeger
(1988), Lightman and Press (1989)), defined as the maximal coordinate distance between two world lines
such that A may receive a return signal emitted at t0:

dih = max
te

a(t0)

∫ t0

te

dt

a(t)
(6.7)

As Patzelt (1990) shows, during an inflationary stage the particle horizon is an upper bound on the inter-
action horizon.
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B. Returning to the second point, it is not clear that local interactions in the early universe travel

at the speed of light: as Ellis and Stoeger (1988) point out, even for massless particles frequent

scattering interactions limit the effective speed of propagation.

6.2.3 Robustness

Sober has argued that the PCC derives whatever methodological force it legitimately has

from the more general “likelihood principle.” In cases in which the PCC applies, according to

Sober, the theory postulating a common cause simply renders the evidence more probable than a

separate cause theory does. Although inflation does not offer a causal explanation of the unifor-

mity of the early universe, it does appear to satisfy the likelihood principle in that it dramatically

enlarges the range of initial conditions compatible with observational constraints. In this sec-

tion I will formulate a criterion of robustness for dynamical explanations; one advantage of this

formulation is that in cases without a well-defined probability measure one can still retreat to

a general “dominance” argument. The preference for a theory providing robust explanations

is then a consequence of the likelihood principle: the probability of a set of observations O is

greater according to a more robust theory.

This comparative notion of robustness should be contrasted with a more general com-

plaint that any explanation based on special initial conditions is somehow flawed. Earman (1995)

has argued convincingly that there is little support for such a strong robustness demand: in some

cases good dynamical explanations do depend on special initial conditions. Consider the prob-

ability of certain features of our solar system (e.g., planets moving in elliptical orbits with low

eccentricity lying in roughly the same plane, smaller interior planets composed of heavy ele-

ments, etc.) given a background dynamical theory. Several of these features, for example the
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low eccentricity of the planetary orbits, seem intuitively improbable. Assuming that the current

theory of planetary formation does not produce nearly circular orbits for a large range of initial

conditions, then this theory does not offer a “robust” explanation of nearly circular planetary

orbits in this general sense. A general demand for robustness surpasses a more modest com-

plaint: perhaps we could gather evidence that in its early stages our solar system was not in

the special state the current dynamical theory requires. But without the evidential basis for this

modest complaint, there seems to be no reason to accept the more general demand—our plane-

tary system may have started in a “special” initial state for all we know. In addition, robustness

characterized as complete independence from initial conditions overshoots the mark; as I argued

above, a dynamical theory may enlarge the set of initial data compatible with observations but it

does not completely eliminate the dependence on initial conditions.

A comparative notion of robustness can be formulated directly if one can sensibly define

a probability measure over the space of models of the theory. Suppose that there are two theories

T1 and T2 such that the set of models Mi

1
which matches observations is generic in the space of

models of T1, whereas the corresponding set of models Mi

2
of T2 is of small or zero measure

(leaving aside for the moment the question of exactly how to assign this measure). In this case

the theory T1 provides more robust explanations of the observations than T2, in that the set

of models compatible with observations has much larger measure. For the sake of concreteness,

note that for well-behaved generally relativistic spacetimes the space of models of the theory can

be identified with sets of initial data. For globally hyperbolic spacetimes, the state of the universe

at a given cosmic time may be represented by an initial data set specified on a Cauchy surface Σ.

These initial data sets correspond one-to-one with cosmological models (up to diffeomorphism

invariance), allowing us to assign a measure over cosmological models in terms of the initial
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data specified on a Cauchy surface Σ. Unfortunately attempts to define a measure over the space

of FLRW models with a massive scalar field in order to allow this type of comparison have led to

the “unambiguously ambiguous” results (Donald Page, as quoted in Lightman and Brawer 1990)

briefly described in 5.4.1 above.

Consider the following “dominance” criteria as a replacement for measure theoretic re-

sults: a theory T1 is more robust than T2 if the set of initial data compatible with observations

given T2 (call this set IC2) is a proper subset of the set of observationally allowed initial data for

T1 (IC1). The idea is that whatever measure is assigned over the initial data, since IC2 ⊂ IC1

we can still say that Pr(IC2) ≤ Pr(IC1). The flatness problem provides the clearest case

of this type of “dominance”: the set of values of Ω(tp) compatible with the observational con-

straints is a superset of those compatible without inflation. In this sense inflation provides a more

robust explanation of the value of Ω according to the dominance criterion.

There are two general difficulties with this dominance criterion. A substantially differ-

ent cosmological theory such as one incorporating Penrose’s Weyl curvature hypothesis could

undercut the advantage of dominance by introducing a strong constraint on relatively spacelike

initial data. This would have the effect of ruling out a large part of the space of classical cos-

mological models, and it is at least conceivable that the resulting small set of allowed models

would be only those compatible with observations. Given that Penrose’s hypothesis is explicitly

formulated as a phenomenological description of the observed universe, it is not surprising that

it singles out uniform initial states. The more interesting question is whether an independently

motivated theory of quantum gravity will incorporate a similar constraint. The second difficulty

is that the intuitive dominance arguments presented in the literature often involve an interplay

between adjusting the parameters of a theory and eliminating fine-tuning of the initial conditions.
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If the potential of the inflaton field is treated as a free function, then observational constraints can

be used to fix parameters of the theory so that fine-tuning of the initial conditions is eliminated. I

agree with Ellis (1991)’s qualms about this type of argument; it is not clear how to make rigorous

probability assessments or how to apply a dominance criterion when one considers a trade-off

between fine-tuning the initial conditions and the parameters of the theory.

6.3 Conclusion

My argument above has focused on the alleged explanatory advantages of inflationary

cosmology. One of the primary appeals of inflation after its initial introduction was that it ap-

peared to solve a number of outstanding problems in cosmology without grappling with Planck-

scale physics and the nature of the initial singularity. The main thrust of the argument above is

that the case for inflation does in fact depend upon very strong assumptions about Planck scale

physics. The “overlapping domains” argument stated in §1 establishes that a complete theory

of early universe cosmology should incorporate both QFT and GTR, but I agrued that there are

three obstacles to satisfactory unification. After 20 years the status of the “inflaton” field with

respect to underlying particle physics is still unsettled. In addition, the cosmological constant

problem indicates that there are still substantial uncertainties in how to incorporate quantum

fields as sources in semi-classical quantum gravity; resolutions of the problem may rob infla-

tion of its power source, namely vacuum energy. Finally, a general “cosmic no hair” theorem

would justify the neglect of the subtleties involved in the onset of inflation, but I argued that

these theorems basically assume the applicability of flat space QFT during the “chaotic” start of

inflation. In §2 I argued that the explanatory advantages of inflation related to robustness also

require strong assumptions regarding Planck scale physics; namely, that the universe emerged
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from the initial singularity in a state without lawlike correlations between relatively spacelike

regions. Such “chaotic” initial states are incompatible with the regular and uniform state re-

vealed by the CMBR. A stage of inflationary expansion insures that a much larger set of these

allowed models are compatible with observational results, and thus inflation offers a more robust

explanation of the universe’s uniformity and flatness. However, a radically different conception

of the initial singularity incorporating constraints on relatively spacelike regions would render

such dynamical mechanisms superfluous.
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Chapter 7

Confirming Inflation

The preceding chapters considered the invocation of metaphysical principles and criteria

of explanatory adequacy to motivate research programs in cosmology. But perhaps my criticisms

of these approaches are irrelevant in the light of a more straightforward empirical case in favor of

a particular program, such as inflationary cosmology. Ongoing attempts to decipher the “Cosmic

Rosetta Stone”—i.e., the careful measurement of temperature anisotropies in the CMBR—have

reached new levels of precision in the past several years, especially with the release of the initial

WMAP (Wilkinson Microwave Anisotropy Probe) data.1 With the advent of various other ob-

servational tools (such as the use of type IA supernovae as standard candles) and further satellite

missions, frequent talk of a “golden age” in observational cosmology is not exaggerated.

Contemporary presentations of inflation often emphasize that these new results can be

used to make such a strong empirical case for inflation that questions of explanatory adequacy

can be set aside. In other words, the account of structure formation and its comparison with

CMBR observations are taken to replace the original rationale for inflation, its ability to solve

the fine-tuning problems of big bang cosmology. For example, Liddle and Lyth (2000) comment

that

1WMAP is optimized to observe small angle temperature variations in the CMBR with a precision
much greater than the earlier (1992) COBE satellite, which first detected temperature anisotropies. See,
for example, Bennett et al. (2003); Spergel et al. (2003) for the analysis of the first year of WMAP
data. Numerous earlier rocket and balloon based experiments such as BOOMERANG and DASI also
measured these temperature anisotropies, and the European Planck satellite (scheduled for launch in 2007)
is designed to measure polarization.
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By contrast to inflation as a theory of initial conditions, the model of inflation as a
possible origin of structure in the Universe is a powerfully predictive one. Different
inflation models typically lead to different predictions for the observed structures,
and observations can discriminate strongly between them. Future observations cer-
tainly will exclude most of the models currently under discussion, and they are also
capable of ruling out all of them. Inflation as the origin of structure is therefore very
much a proper science of prediction and observation, meriting detailed examination.
(Liddle and Lyth 2000, p. 5, cf. Barrow and Liddle 1997)

I take Liddle and Lyth to be arguing that inflation offers a fruitful reinterpretation of the spectrum

of density perturbations subject to rich empirical tests. Within the context of inflationary theory,

small departures from the exact symmetry of the FLRW models provide measures of the potential

of the field driving inflation. According to the theory, these perturbations are the product of

quantum fluctuations stretched and imprinted during the inflationary stage.

The compatability of inflation with the observations of the CMBR is clearly an important

success of the theory. The COBE observations served to rule out inflation’s only major competi-

tor in the early 90s, the topological defect theory of structure formation. Yet there is a natural

concern whether this success represents anything more than the malleability of the inflationary

paradigm. Let me briefly illustrate this concern with an extreme example of a similar problem.

Advocates of intelligent design claim that some empirical features of the world—say, the char-

acteristics of cheetahs—can be explained as the product of a Designer’s plans (this example is

borrowed from Sober 1999). The notorious and obvious difficulty with assessing such a claim

is that it neatly divides into two conjuncts: (1) the cheetah is the product of intelligent design,

and (2) if a Designer were to make cheetahs, they would have the the following properties:

“ ” . Given what we know of cheetahs, it is easy to fill in the “ ” appro-

priately to guarantee that the theory of intelligent design reproduces the observed characteristics

of cheetahs. But this clean division poses a problem for the advocate of the hypothesis (1), since
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the flexibility of (2) shields it from being independently tested. To answer this objection the

advocate of intelligent design requires a detailed and independently motivated account of how to

fill in the blank. Any account of (2) must answer the skeptic’s immediate rebuttal, namely that

the account of the Designer has been carefully designed to produce the desired results. (And

presumably this account should differentiate between cheetahs and other animals, such as grey-

hounds, with similar characteristics that are clearly not due to the Designer.) Thus the difficulty

with intelligent design is not that it fails to make predictions, but that the predictions it does

make do not provide grounds for assessing the claim of interest rather than the conjunct.

The analogy with inflationary cosmology runs as follows: the claim that various features

of the early universe can be explained as the product of an inflationary stage also divides into

two conjuncts, namely (1) an inflationary stage occurred, and (2) if inflation occured, then the

universe has the following properties: “ ”. Do we have grounds for filling in the

blank that are independent of our knowledge of the observed properties of the early universe?

The combination of “chaotic” variations in the initial conditions and form of the inflaton potential

with an appeal to the anthropic principle seems to guarantee a negative answer in some versions

of chaotic inflation. However, in general the prospects do seem much better than in the case

of intelligent design. Suppose that the properties of the scalar field driving inflation are fully

specified by considerations from particle physics. Then we would (modulo concerns about the

various approximations involved and the computational tractability of the model) be able to

calculate the “output” of an inflationary stage, for some given initial conditions, and compare

it to observations of the CMBR. Obviously passing such a test would provide a confirmatory

boost to inflation; Peebles, for example, counts “deduction of the inflaton and its potential from

fundamental physics” as a classical test of inflation (“one that follows the old rule of validation
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by the successful outcome of tests of the predictions of a theory”). But he also characterizes the

status of this “deduction” as nothing but “a wonderful dream” (Peebles 1999). This worry about

the independent assessment of the “output” of an inflationary stage has more force following

the shift described in Chapter 4 towards treating the “inflaton” as a free parameter. Critics

of inflation such as Neil Turok have frequently cited inflation’s malleability as a fundamental

obstacle to any meaningful test of the theory (Turok 2002): “I can’t think of a conceivable test

which would decisively prove inflation wrong. Therefore I don’t think it’s a testable model.”

In the following, I will focus on two aspects of the difficulties with testing inflation. First,

there are two related difficulties regarding the trio of inflationary predictions emphasized by Guth

(1981): are these predictions “robust,” in the sense that all “natural” inflationary models give the

same predictions, and are they also distinctive, in that they differ from predictions made by

alternative theories of the early universe? My sympathies are with the inflationary skeptics, who

answer with a qualified “no” to both questions. The skeptic’s qualms are due to our ignorance of

the space of alternative theories, and they have offered arguments that several of the predictions

of inflation are to be expected based on other background assumptions, and thus deliver a small

confirmatory boost. By contrast, turning to the second aspect, inflationary predictions regarding

the spectrum of density perturbations are not subject to the same criticisms.2 Furthermore, in

some presentations of inflation the account of structure formation is characterized as a “novel

success” of the theory: inflation was not “designed” to give an account of structure formation,

and thus its success should be given extra weight. But the invocation of design cuts both ways,

since the inflaton potential needs to be tuned carefully to produce a workable account of structure

2Within the past three years, however, the “ekpyrotic scenario” has developed a viable alternative
mechanism for generating density perturbations with many of the same features of inflation. In this
chapter, I will unfortunately not take up a more detailed comparison of the two theories.
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formation. Below I will argue that the fundamental issue is not one of novelty, but rather a

question of what sources of information are used as a “diagnostic,” that is, used to set various

parameters occurring in the theory — in this case in the inflaton potential. In well understood

theories multiple independent sources of observational or experimental data can be used to set

parameters appearing in the theory, and the theory generates predictions of greater scope than the

“diagnostics” used in fixing these parameters. My tentative suggestion is that cases of “novelty”

are often associated with a theory’s ability to generate predictions for a range of phenomena that

were not invoked as diagnostics in developing the theory.

7.1 Testing Inflation I

Proponents of new theories often advocate reinterpreting a set of known regularities us-

ing their novel theoretical machinery. Inflationary cosmology replaces details regarding the uni-

verse’s initial state with the effective potential V (φ) of a new fundamental scalar field, the infla-

ton field φ. Various features of the universe are then interpreted as the results of the evolution of

φ in the early universe. One of the difficulties with assessing the evidential support for inflation-

ary cosmology is that inflation is a “paradigm without a theory” (in Michael Turner’s phrase).

Models of inflation share the general feature that the early universe goes through a stage of rapid

expansion (characterized by ä > 0) driven by φ trapped in a false vacuum state. But the wide

variety of models differ in the form of the effective potential V (φ) appearing in the equations of

motion for φ (or for multiple fields) and in the initial conditions of the field(s). These differences

lead to a number of variations—some subtle, but others quite dramatic—in the state of the early

universe following inflation.
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Rather than focusing on a particular model plucked from the inflationary zoo, I will

review the frequently cited “robust” predictions of inflation; by robust I mean the predictions

shared by the class of “natural” inflationary models. Qualms about whether these predictions are

truly robust have two sources: the first is simply that theorist’s opinions as to what constitutes

a “natural” inflationary model—and hence whether a given prediction is truly robust—differ;

the second is that the calculations may actually depend on strong assumptions regarding Planck-

scale effects (to be discussed in section 7.5). These qualms notwithstanding, one may hope to

find decisive empirical tests for a large class of inflationary models by specifying the fingerprint

of a period of exponential expansion. The second difficulty, which I will address in Bayesian

terms, is that the weight given to finding this fingerprint of inflation depends on whether alterna-

tive theories have similar fingerprints.

The following trio of inflationary “predictions” emphasized in Guth (1981) are trotted

out in any introduction to inflation:

Massive Relics

GUTs are expected to produce magnetic monopoles in a symmetry-breaking phase transi-
tion at an energy of roughly 10

14
GeV . Monopoles are produced with a density of roughly

one monopole per horizon volume at the time the phase transition occurs; given that the
observable universe (sans inflation) encompasses roughly 10

80 such horizon volumes, it
should contain roughly 10

80 such monopoles. At the lightest, these monopoles are ex-
pected to have masses of about 10

16
GeV —so at this abundance, the monopoles alone

would contribute an energy density roughly 11 orders of magnitude greater than the crit-
ical density.3 Incoporating inflation leads to an expected monopole abundance in the ob-
servable universe of one, since the universe expands from a single horizon volume, and
thus eases the disastrous conflict with observation.

Spatial Flatness

3See, e.g., Blau and Guth (1987), pp. 530-32 for this calculation of the energy density contributed by
monopoles.



250

Inflation drives the density paramater Ω rapidly towards one during the stage of exponen-
tial expansion, but later stages of FLRW evolution magnify any small differences from
Ω = 1 (see Appendix A.2). If Ω takes a value on the order of 1 initially, then if the scale
factor increases by a factor f during inflation, it follws that at the end of the inflationary
stage Ω − 1 is on the order of f

−2. A sufficiently long inflationary stage (ln(f) ≥ 60,
usually called the “number of e-foldings”) insures that |Ω0 − 1| � 1. Inflationary models
satisfying this requirement predict that Ω0 ≈ 1.

Large-scale Uniformity

On large scales (from angular scales of about 10
′′ to 180

◦) various observations reveal
that the CMBR temperature is incredibly uniform, to roughly one part in 10

5. Given the
same number of “efoldings” as above, inflation traces this uniformity back to the uniform
evolution of the inflaton field in the single horizon volume which expanded to encompass
the observable universe.4

The development of an ever wider variety of inflationary models has cast some doubt on whether

this trio qualify as “robust” predictions. Inflation models yielding a wide range of monopole

densities have been produced, weakening Guth’s original result that inflation necessarily results

in a negligible monopole density (see Yokoyama 1989).

The “robustness” of the flatness prediction is undermined by two important points. First,

“open” inflationary models have been designed to produce Ω0 < 1 (see, for example Bucher

et al. 1995; Ratra and Peebles 1995). For those who accept open models, decisive observational

evidence that Ω0 6= 1 would rule out a large class of inflationary models but not the very idea of

inflation. Yet many theorists describe open models as unacceptably ugly:

I think open inflation is an example where you’re trying to turn a model against
itself. Inflation ... has the word “flat” in it to remind you that it’s about flattening
the universe. And, in particular, what’s spectacular about inflation is that with ex-
ponential efficiency it flattens the universe. So it’s like a bulldozer running through
the universe and flattening it, and to make open inflation is like saying, “I’m going
to have this bulldozer running at top speed and then I’m going to stop it at a dime
after 50-52 efolds of inflation, because I need to have not quite enough inflation to
make the universe flat.” (Steinhardt 2002, p. 45)

4Here I am setting aside the difficulties with showing that inflation occurs in generic conditions in
the early universe and that it produces uniformity (i.e. the cosmic “no hair” theorems) discussed in the
previous chapter.
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Ruling out ugly models requires placing constraints on V (φ) and/or barring monsters such as

hybrid inflation models with multiple fields or multiple stages of inflation; without some degree

of agreement regarding the background particle physics theory in which V (φ) is defined it is hard

to see how to justify such constraints aside from subjective appeals to simplicity. Proponents of

the open models certainly did not see their proposals as requiring an inherently “ugly” choice

for the effective potential or other detailed aspects of their models. Debates on this issue were

not so much settled as pushed to one side as a number of observational results supported a

value of Ω0 ≈ 1, contrary to earlier work that had consistently indicated a lower value of Ω0;

inflationary cosmologists who had insisted all along on excluding the monstrous open models

took this as a final vindication.5 The situation is similar to the tests of early GUTs via proton

decay experiments: while the failure to detect proton decay on the appropriate time scale did rule

out the standard SU(5) GUT, it also did not lead theorists to abandon the project of unification.6

The second point undermining the robustness claim is that the “prediction” that Ω0 = 1

only holds given some assumptions regarding the pre-inflationary value of Ω (see, e.g, Madsen

et al. 1992). This is simply Stewart’s objection to Misner reiterated: pick any particular value of

Ω0 (even one far away from 1), and one can always trace it backwards through the evolution of

a(t)—whether there is an inflationary stage or not—to find an initial value of Ω. This objection

5See Coles and Ellis (1997) for a review of the debate circa 1997 that makes a strong case for Ω0 ≈ 0.2;
within the last eight years several new observational results have persuaded most of the community to
accept a large ΩΛ, leading to a total Ω0 = 1 (see, e.g., Bahcall et al. 1999).

6Albrecht (1997), among others, emphasizes this analogy. Albrecht also points out that the failure of
the standard SU(5) GUT lead to a variety of different approaches to GUT-scale physics, and he expects
that the failure of “natural” inflationary models would force theorists to work with a variety of fairly
contrived models. One important disanalogy between the two cases is that no fundamental principles
guide inflationary model-building in the same sense that gauge invariance and renormalizability guide the
unification program.
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is much weaker. The typical response is to appeal to the idea of dominance (discussed in §6.2.3

above): inflation renders a much larger range of initial values of Ω compatible with Ω0 = 1.

The more general issue is the tremendous flexibility of the inflationary paradigm if it is

treated simply as scalar field dynamics. Since the false vacuum state dominates over all other

sources of energy density during the inflationary stage, the effective potential V (φ) determines

the behavior of the scale factor a(t). The potential is usually taken to be the “input” fixed by

particle physics with the behavior of a(t) treated as the “output”. But turning this around, Ellis

and Madsen (1991) have shown that the form of the potential V (φ) (treated as a free function)

can be derived for various different behaviors of the scale factor a(t). This “recipe” for generat-

ing the form of the potential is a simple case of a more general trick: take a solution of EFE as

given and simply define the matter content by the appropriate Tab. In this case Ellis and Madsen

(1991) consider exact FLRW models with a stress energy tensor including radiation and a scalar

field, with no interaction between the two components. The EFE yield two equations relating

the scale factor a(t) to the energy density of the radiation and the energy density and pressure

of the scalar field, along with a conservation equation for the total energy density and pressure.

For a given monotonic function a(t) these equations can be solved for the potential V (φ). Thus

in the absence of constraints on V (φ), inflation can produce any desired behavior of the scale

factor a(t).

Aside from robustness concerns, the assessment of these predictions depends on the like-

lihood assigned to a particular evidence claim were inflation to be false. Arguments about the

probable state of the universe sans inflation fall back on speculation about the space of alterna-

tive theories, and critics of inflation have often argued that observed features of the universe may

ultimately be explained by a quantum theory of gravity, rendering inflation superfluous. Such
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expectations leave critics less impressed by inflation’s ability to predict, for example, a uniform

early universe. This can be cashed out in Bayesian terms as follows. In Bayesian confirmation

theory, the confirmatory power of an evidence statment E for a given hypothesis H is given

by C(H,E,K) = Pr(H|E ∧ K) − Pr(H|K).7 In light of evidence E, the prior probability

accorded to hypotheses H is updated according to Bayes’s theorem:

Pr(H|E ∧ K) =
Pr(H|K) × Pr(E|H ∧ K)

Pr(E|K)
. (7.1)

We can rearrange this equation slightly, utilizing the principle of total probability and assuming

that {H,K} |= E, so that Pr(E|H ∧ K) = 1:8

Pr(H|E ∧ K) =
1

1 + Pr(E|¬H ∧ K) × Pr(¬H|K)
Pr(H|K)

. (7.2)

An increase in the conditional probability Pr(E|¬H ∧ K) (assuming that ¬H is given a non-

negligible prior) leads to a decrease in Pr(H|E∧K), and hence a decrease in the confirmational

boost H receives in light of E.9 The expectation that one of the hypotheses in the terra incognita

of ¬H entails E leads to a lower value for the confirmatory power of E.

7See, e.g., Howson and Urbach (1989) for a comprehensive introduction to Bayesian confirmation
theory. Pr(H |K) is the prior probability accorded to the hypothesis H given background knowledge K,
whereas Pr(H |E ∧ K) is the posterior probability, clculated according to Bayes’s Theorem. According
to the subjectivist interpretation of Bayesianism, these probabilites are interpreted as rational degrees of
belief.

8The principle of total probability states that Pr(E|K) = Pr(H |K)Pr(E|H ∧ K) +
Pr(¬H |K)Pr(E|¬H ∧ K). The equation above follows by expanding the denominator, dividing by
Pr(H |K) and then using Pr(E|H ∧ K) = 1.

9
Pr(E|¬H ∧ K) and Pr(E|H ∧ K) are called likelihoods. In cases of statistical hypotheses, past

data regarding frequencies or explicit assumptions about chance processes built into H justify reading the
likelihoods as objective propensities (see Salmon 1990, §6 for discussion). I will set aside for the present
discussion the problem of how probabilities are to be interpreted in cosmology (and whether an objective
propensity interpretation would apply here), and read the likelihood as a degree of belief.
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As a concrete example, consider how this Bayesian machinery clarifies the difference

between inflation’s predictions of uniformity and monopole abundance. During discussion at

the Seven Pines Symposium (May 10-14, 2000), Robert Wald argued that inflation’s prediction

of large-scale uniformity (EU ) does not merit a large confirmatory boost, due to the possibility

that an as yet undreamt of theory may entail that the early universe is remarkably uniform. In

the terms above, Wald would assign a high value to the likelihood Pr(EU |¬H ∧ K), and a cor-

respondingly low value of C(H,EU ,K). By way of contrast, Wald acknowledged that the ob-

served negligible abundance of monopoles (EM ) would provide convincing evidence of inflation

if it could be shown that GUTs unambiguously predict a high monopole abundance which cannot

be reduced by annihilation in the early universe. Unlike the assessment of Pr(EU |¬H ∧ K),

which in Wald’s view depends on an educated guess regarding future theory at the Planck scale,

monopole abundance calculations rely on a (somewhat) more modest semi-classical approxima-

tion. The space of hypotheses relevant to assessing Pr(EM |¬H∧K) includes GUTs that do not

produce appreciable monopole abundances and/or those that reduce abundances by means other

than dilution during inflationary expansion. If no such theories exist—that is, if GUTs necessar-

ily produce high monopole abundances, then the value of C(H,EM ,K) would be very high. In

both cases, Wald’s assessment emphasizes the relevance of the (only partially understood) space

of alternative theories.

This example illustrates that the evaluation of Pr(E|¬H) (dropping explicit conditional-

ization on K) relies on plausibility arguments that reflect an ignorance of the space of alternative

theories. In a case where there are several viable alternative theories, ¬H can be broken down

further into a disjunction of alternatives to H (say, H1,H2, ...) and the “catchall” hypothesis HC

representing the undiscovered country (added to insure that the list of hypotheses is exhaustive).
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For the enumerated alternatives, a degree of subjectivity in the evaluation of Pr(E|Hi) persists

in cases where it is not known whether Hi conjoined with K entails the evidence, and the hy-

pothesis is not related to a statistical model. But the inflationary skeptic is in the more difficult

position of arguing that we should take seriously the idea that for one of the unknown theories

contained in the catchall (say, Hα) {Hα,K} |= E, where E includes the evidence usually cited

in favor of inflation. Even if such an Hα exists, it does not follow that Pr(E|HC) is close to

unity (the likelihood of E for one of the disjuncts of HC does not imply anything regarding the

likelihood for HC itself). Thus the analysis of Pr(E|HC) is particularly intractable, as Salmon

(1990) has emphasized. In light of this difficulty Salmon (1990) suggests focusing on compar-

isons of existing alternative theories, so that we need only calculate the ratio of probabilities

Pr(H1|E∧K)
Pr(H2|E∧K) (and the problematic term Pr(E|HC) cancels).10 Although this may be an appeal-

ing move in cases of theory choice between two (or more) well developed competing theories, in

the present case, the inflationary skeptics’ dissatisfaction stems from the lack of effort devoted

to exploring alternatives to inflation.

7.2 Testing Inflation II: Structure Formation

A proponent of inflation could circumvent both difficulties by showing that inflation de-

livers a robust prediction of an otherwise unexpected result (i.e., one such that Pr(E|¬H ∧ K)

is low). The leading candidate for such a prediction is the spectrum of density perturbations

produced during inflation. These variations in density leave an observable imprint on the CMBR

10Earman (1992) argues that the cost of avoiding likelihoods (Salmon also eschews calculations of
Pr(E|K)) is too high: one can neither compare the differential confirmation value of different evidence
claims with respect to the same theory, nor assign an absolute low probability to a “theory” such as
scientific creationism.
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as temperature fluctuations. Inflation produces inhomogeneities in the early universe by ampli-

fying variations from small length scales to cosmological scales.11 On the assumption that the

only pre-inflation inhomogeneities present are the vacuum fluctuations of the inflaton field φ,

one can determine the spectrum of density perturbations following the completion of inflation

by studying the evolution of these fluctuations during the inflationary stage. Briefly, one treats

the vacuum fluctuations as a small perturbation (δφ) to the field φ. If the so-called slow-roll

approximation applies, the dV
dφ term in the equations of motion for φ can be neglected, and one

obtains the following equations of motion for the perturbation:

¨(δφ) + 3H ˙(δφ) +

(
k

a

)2

(δφ) = 0, (7.3)

where k is the wave number for a given Fourier component. Expanding δφ in terms of creation

and annihilation operators, and plugging back into the equations of motion, the solution for ωk(t)

is given by (neglecting time dependence of H):12

ωk(t) = L
−3/2 H

(2k3)1/2

(

i +
k

aH

)

exp

(
ik

aH

)

. (7.4)

11For a similar treatment that I draw on here, see Liddle and Lyth (2000), Chapter 7, or for a more
detailed discussion of cosmological perturbations in general as well as the production of density pertur-
bations in an inflationary stage, see Mukhanov et al. (1992).

12The field is defined in terms of creation and annihilation operators (ak, a
†

k
) as follows: δφ(t) =

ωk(t)ak +ω
∗

k
(t)a

†

k
. The solution is found by stipulating that for wavelengths much smaller than the hori-

zon size (k � aH), we have the familiar flat-space field theory result, written in co-moving coordinates

as ωk = a
−3/2 ( 2k

a

)−1/2
e
− ikt

a .
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When the horizon size is much greater than the wavelength of these fluctuations, aH � k and

the solution of ωk(t) simplifies, yielding

〈0||δφk |
2|0〉 = |ωk|

2
=

H
2

2k3 . (7.5)

This indicates that for a given mode the perturbation in δφ becomes “frozen out” at this fixed

value (it no longer depends explicitly on time, since H is treated as a constant). Thus the quan-

tum field no longer fluctuates; instead, the modes stretched to super-horizon scales are imprinted

as classical perturbations in the field value, which are then linked to metric perturbations via Ein-

stein’s equations. These curvature perturbations return to sub-horizon scales following the end

of inflation (when the Hubble length becomes greater than the comoving length scale). Finally,

one can express the spectrum of density perturbations in terms of equation 7.5, which in turn can

be expressed in terms of the potential V (φ) and its derivatives with respect to φ; this establishes

the desired link between observed density perturbations and the properties of the inflaton and its

potential.13

Recent research on inflation has emphasized the difference between the inflationary pre-

dictions for density perturbations and the earlier predictions regarding initial conditions. Liddle

and Lyth (2000) praise inflation as a theory of structure formation for making the following

generic and robust predictions:

Near Scale Invariance

For a scale invariant spectrum of density perturbations, the density contrast δM/M is
constant (it is the same at all scales). Inflationary models generally predict a nearly scale

13In section 7.5 below, I will discuss recent criticisms that this calculation relies on a number of ques-
tionable assumptions.



258

invariant spectrum; however, this can be altered if H is not constant during the era when
the density perturbations cross the Hubble radius.

Passivity

Inflationary perturbations are imprinted quite early, but after the inflationary period the
perturbations evolve according to linear equations of motion (that is, they evolve pas-
sively). This linear evolution produces the characteristic “Sakharov oscillations.”

Gaussianity

The distinct Fourier modes of the density perturbations produced during inflation are un-
correlated.

Consistency equation

Inflation produces tensor perturbations (also called relic gravitational waves) in addition
to scalar perturbations. The vacuum fluctuations of the inflaton give rise to both types of
perturbation, and both are determined by the continuous function V (φ). One can eliminate
V (φ) in expressions for the spectra of scalar and tensor perturbations, thereby obtaining
the so-called consistency equation r = −2πnG, where r is the ratio of contributions from
the tensor and scalar perturbations and nG is the spectral index of the gravitational waves.
This consistency equation holds for any V (φ) in a single field model, as long as the slow-
roll approximation holds.

The inflationary skeptic is thus deprived of the two criticisms discussed above: in this case,

inflation does appear to make specific, generic predictions, and (until very recently) there were

no arguments to the effect that Pr(E|¬H ∧ K) should be high. However, the skeptic might

change her strategy: as we saw in Chapter 4, current candidates for the inflaton field have all been

chosen with observational constraints on the amplitude of the resulting density perturbations in

mind. Should the use of this evidence in the construction of the theory weaken the confirmatory

boost it renders to the completed theory?

7.3 Use-Novelty and Independence

Quarrels about whether novel predictions pack any extra confirmatory punch go back to

(at least) the Whewell - Mill disputes, and have continued to the present. Those who attribute

extra importance to novelty distinguish between two situations. In the first, a theory predicts
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new phenomena that were not considered during the development of the theory. In the second,

a theorist well aware of a set of observational results ingeniously designs a theory that accomo-

dates all of these results. Surely, the argument goes, in the first situation the theory has passed an

important test and our confidence in it should improve, whereas a theory is not similarly tested in

the second situation. John Worrall has recently defended a view along these lines, and I will use

his discussions of use novelty (in Worrall 1985, 1989) as a starting point for the discussion be-

low.14 The opposing side in the debate sees incorporating genealogy as a fundamental mistake.

How could a particular scientist’s (or even the scientific community’s) path to the discovery of

a theory have any impact on the truth of a theory? Surely psychological details, such as a sci-

entist’s awareness of a particular result (or failure to take it into account), are irrelevant to how

the theory fares before the tribunal of experience. On this view confirmation theory consists of

understanding the content of a theory and how it fits with available evidence, and the distinction

between novel predictions and accomodation is nothing but history. Below I will discuss use

novelty briefly, leading into Leplin’s analysis of novelty in terms of the “independence condi-

tion.” I will argue that the important conception underlying these discussions is that a theory

should be informative in the sense of generating a number of entailments that are independent

from the results used as diagnostics.

First it will be useful to state the main claims advanced by Worrall and others more

precisely. Musgrave (1974) draws a useful contrast between “historical” and “logical” accounts

of confirmation. According to the former, a theory’s provenance has some role in assessing the

confirmatory support delivered by the evidence, and this may allow one to evade the paradoxes

14Other advocates of this line of thought include Whewell, Duhem, Giere, Zahar, Leplin and Maher.
Worrall calls his own view the “heuristic account” of confirmation, but in more recent discussions “use
novelty” has become the standard term. For more comprehensive discussions, see Leplin (1997), Chapter
2, and Mayo (1996), Chapter 8.
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of a Hempelian approach to confirmation theory by incorporating background knowledge. The

difficulty lies in incorporating background knowledge without thereby making confirmation an

entirely subjective notion. The “logical” account focuses entirely on the formal relations between

theory and evidence, on the grounds that these are all that matters to confirmation theory. Worrall

states the guiding idea of his historical account as follows (Worrall 1985, p. 301):

...in order to decide whether a particular empirical result supports or confirms or
corroborates a particular theory the way in which that theory was developed or con-
structed needs to be known—more especially, it has to be checked whether or not
that empirical result was itself involved in the construction of the theory.

We can render this claim more precisely in two different ways (following Earman 1992, pp.

114-16), leaving the phrase “used in the construction of” ambiguous for now:

UN: Given two theories T, T
′ that both entail the same evidence claim E, T receives more

support than T
′ from E if E was used in the construction of T

′ but not T .

UN*: Given two evidence claims E1, E2 both entailed by T , T receives more support from E1
than from E2 if E2 is used in the construction of T whereas E1 is not used.

Furthermore, we can distinguish between a modest and stronger version of the use novelty thesis

depending on the extent of our background knowledge regarding the content of a theory and its

evidential support. According to the modest version of UN, assessments of novelty are important

only when we are mostly ignorant of the content of the theories T, T
′.15 Modest UN states that

one should prefer T in this case. Strong UN, on the other hand, holds that use novelty is relevant

even when we have rich background knowledge regarding the theory and other evidential support

for it. For example, according to the strong UN thesis, the extent to which the observed value of

Mercury’s anomalous perihelion motion supports GTR depends upon whether this fact was used

15Modest and strong versions of UN* can be formulated along the same lines.
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in the construction of GTR, even in light of a detailed understanding of the theory’s content and

independent evidential support in its favor.

Accepting either of these two criteria would represent a significant departure from a

Bayesian approach to confirmation theory. Bayesian updating is insensitive to whether E was

used in the construction of T ; any difference in confirmational support E delivers to T, T
′ de-

pends upon differences in the priors and the likelihoods. Explicitly, since T entails E, C(T,E,K) =

(Pr(T |K))
[

1
Pr(E|K) − 1

]

and likewise for C(T
′
, E,K). Only the priors and likelihood appear

in this equation, and thus the Bayesian can agree with Worrall’s intuition only to the extent

that use-novelty can be smuggled into assignments of the priors and/or likelihoods. UN holds

that C(T,E,K) > C(T
′
, E,K) in cases of use construction, and the Bayesian can concur

only if Pr(T |K) > Pr(T
′|K); similarly, a Bayesian agent can agree with UN* only in cases

where Pr(E1|K) < Pr(E2|K). Regarding the first case, it seems plausible that assignment

of Pr(T |K) should depend upon how the theory was constructed. However, I see no reason to

expect that evidence used in theory construction would always have lower likelihoods than other

evidence used in assessing the theory.16 Even if the Bayesian can juggle priors in order to save

UN, she will not be able to account for the difference in incremental confirmation provided by

E1 and E2.

Staunch Bayesians argue that the intuition underlying UN and UN* is simply misguided;

Howson and Urbach (1989), for example, argue that the claim “that a hypothesis designed to fit

some piece of data is not supported by it to as great an extent as one which also fits the data

accidentally,” though “certainly inconsistent” with Bayesianism, is also false (p. 276 ff.). There

is also historical evidence that scientists may not agree with UN*: Brush (1989) argues that

16Here I am setting aside the problem of “old evidence.”
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scientists put more weight on general relativity’s ability to predict Mercury’s perihelion motion

than on the confirmation of light bending in the sun’s gravitational field, despite the novelty

of the latter claim. Clearly Mercury’s anomalous perihelion motion fails a temporal novelty

requirement, since the result was known before Einstein began working on GTR.

The main line of defense in favor of the strong UN thesis (see, e.g. Worrall 1989) is

typically presented as follows. Suppose that we have two theories T and T
′ that both entail a

particular evidence claim E, which happened to be used in the construction of T
′ but not T .

The success of T must have occurred either by chance or due to its accurate representation of

the phenomena in question. The former would require an unlikely coincidence, a lucky break

in the theory’s favor. The truth of T accounts for its ability to produce accurate predictions, so

the success of T gives further evidence of its truth. On the other hand, the success of T
′ can be

readily explained in terms of the flexibility of the theory and the ingenuity of the theorists who

exploit this flexibility to arrive at the right result. A slight variation on this argument emphasizes

that in the latter case the experiment that produced the result E may have shown T to be incorrect,

but it could not have falsified T
′.

While this argument does have some plausibility, it does not fare well in response to

the following objection: in what sense is the truth or use-construction of a theory relevant to

the claim that T entails a particular result? The fact that a particular entailment holds for the

theory T is not explained by T ’s truth; the structure of the theory is given and holds necessarily

regardless of its truth or falsity. Similarly the truth of T does not have explanatory bearing on the

historical contingencies that lead to its introduction: unless we’re willing to postulate an extra

faculty of judgement to, say, Newton, the truth or falsity of Newtonian theory doesn’t have any
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bearing on whether Newton did or did not “design” a lunar theory in order to get the proper

motion of the lunar apsides.

Any account of novelty should clarify when a particular empirical result qualifies as a

novel prediction of a theory or fails to do so. In the passage quoted above Worrall leaves the ques-

tion of whether a result is “used in the construction of a theory” to historians. Early discussions

of novelty focused on temporal novelty: a result unknown at the time a theory is formulated cer-

tainly could not have influenced theorists. But the important issue is the extent to which a theory

depends on a particular result, and Worrall plausibly suggests using the historical development

of the theory as a guide. For cases such as blatant parameter fixing, historians may well reach

agreement about whether a result is used in the construction of a theory. However, knowledge of

observational results shapes theorists’ endeavors in a variety of ways, and it is not immediately

clear when to discount the evidential support from a particular piece of evidence due to its use.

Returning to the shopworn example above, Einstein was aware of the anomalous perihelion mo-

tion of Mercury during the development of general relativity. Although that knowledge did serve

to guide theory development, Einstein did not “design” the field equations specifically to resolve

the anomaly. In intermediate cases where E serves as a guide to theory development—perhaps

by ruling out a number of otherwise reasonable lines of inquiry—should the theory still receive

an extra confirmatory boost from E, or does E fail to count as “novel” evidence? On Worrall’s

account, all of these questions should be answered by a thorough examination of the provenance

of the theory.17

17Worrall takes the emphasis on provenance to be an advantage of his view over Zahar’s account,
which focusd on the novelty of a given result with respect to the set of problems important to the scientist
developing the theory: the provenance can be established based on a variety of historical records, whereas
the psychological details important to Zahar’s account would be almost impossible to determine.
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Introducing the theory’s provenance as a component of confirmation theory has an unap-

pealling consequence. Suppose, for example, that a scientist “Alice” uses E to set a parameter

of a theory T , without recognizing that other theoretical commitments already fix the parameter.

Discovering Alice’s error might prove quite difficult, yet on Worrall’s account the assessment

of E’s support for T crucially depends on it. Even in cases where historical records allow a

rich reconstruction of a theory’s development, this reconstruction may fail to identify the role

various evidential claims play in the structure of a theory. Alice’s error would turn a successful

novel prediction into a clear case of using evidence in the construction of the theory. As a re-

sult, Alice’s theory would receive less support from E than that of another scientist “Bob,” even

if Bob’s theory differed only in that Bob realized that parameter-fixing was unneccessary. One

cannot ask whether E supports T without further specifying the provenance, thereby relativizing

the confirmatory status of the evidence to the details of a theory’s development. For advocates of

a logical approach to confirmation, examples like this one merely illustrate the disastrous con-

sequences of incorporating a historical component in confirmation theory: new historical details

regarding a theory’s development would lead to complete re-evaluations of a theory’s evidential

support. While historians would perhaps rejoice in their new status as the final appellate court in

the tribunal of experience, this conclusion has the ring of a reductio ad absurdum.

Rather than abandoning a historical approach entirely in light of such examples, there

is an important insight worth retaining that need not depend on detailed reconstructions of a

theory’s provenance. Whether a given result is novel with respect to a theory depends solely on

the structure of the theory. Theorists may draw on an incredibly rich background of experimental

results and theoretical commitments in order to produce a theory which, in the end, is only

related to a small subset of this background knowledge. Even though a theory’s provenance is
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often a clear guide to the relation a theory bears to a particular evidential claim, it need not be.

Recently Leplin has developed an account of novelty (Leplin 1997, Chapter 3), part of which I

will adopt here. On Leplin’s analysis, an evidence claim E is novel with respect to a theory T if

the following two conditions hold:18

Independence Condition: There is a minimally adequate reconstruction of the reasoning
leading to T that does not cite any qualitative generalization of E.

Uniqueness Condition: There is some qualitative generalization of E that T explains and
predicts, and of which, at the time that T first does so, no alternative theory provides a
viable reason to expect instances.

A qualitative generalization of E is the general type of effect or phenomenon of which E is a

token; for example, various predictions for the degree of light bending around the sun would

all count as members of the qualitative generalization of the general relativistic prediction. The

independence condition is meant to distinguish those results actually used in constructing the the-

ory from those which may have been known, but play no role in motivating the theory. Briefly,

a minimally adequate reconstruction clarifies the essential steps in the reasoning leading to the

basic hypotheses of a theory T .19 Leplin argues that such a reconstruction takes the form of

an argument leading to the theory T from premisses taken from among the following three

types: specific empirical results or generalizations of them, pragmatic appeals, and higher level

methodological constraints. Among the second type, Leplin has in mind primarily simplicity

constraints, and he gives symmetry principles in particle physics as an example of the third type.

A reconstruction is adequate if it accurately conveys the reasons for proposing and considering

18I have made minor modifications of Leplin’s notation to accord with mine (see Leplin 1997, p. 77,
for the original formulation).

19The basic hypotheses are those which constitute a theory, in the sense that abandoning them is in-
compatible with retaining T—for example, abandoning Einstein’s field equations would mean abandon-
ing general relativity, although one could certainly abandon various standard energy conditions in GTR
without likewise abandoning the theory.
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the theory. To further qualify as minimally adequate the reconstruction must satisfy two addi-

tional requirements: (1) none of the empirical results used in the reconstruction can be replaced

by a logically weaker proposition, and (2) the conjuction of the premisses cannot be logically

simplified. Thus, an evidence claim which satisfies the independence condition plays no role in

the construction of T in the sense that the theory can be independently motivated without using

a generalization of E.

Although Leplin further imposes the uniqueness condition, I take this to be a mistake—

and it is even inconsistent with Leplin’s other commitments. The uniqueness condition rela-

tivizes the notion of novelty to the class of competing theories, since a result only counts as

novel if T alone predicts its occurence. Leplin elsewhere asserts that the novelty should be a

binary relation between a theory and evidence, yet here his own account fails this requirement. I

agree with Leplin’s insistence that whether a result is novel for a particular theory should depend

solely upon the evidence claim and the theory, and so I will drop the uniqueness condition. This

account is still “quasi-historical” in two senses. First, the minimally adequate reconstructions

may shift substantially over time due to changes in basic hypotheses as well as higher order

methodological constraints. For example, new theoretical developments may dictate the values

of parameters previously treated as free parameters constrained by qualitative generalizations

of E. Second, assessments of independence may also be subject to revision based on earlier

incomplete or inaccurate knowledge of a theory’s content and entailments.

In conclusion, in developing this modified version of Leplin’s account I have argued for a

conception of independence rather than novelty. To go further in this direction I should establish

that in historical cases used to support the importance of novelty (such as those discussed by

Worrall 1989), independence is really at issue. In addition, I have not supplied a convincing
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epistemic rationale for independence. But rather than taking up these issues here, I will turn to

the implications of this discussion for the assessment of inflationary cosmology.

7.4 Inflation and Independence

Applying Leplin’s analysis to the case of inflation helps to clarify the importance of the

link between fundamental particle physics and inflation. The spectra of density perturbations

have often been cited as a novel success for inflation: the theory was developed with no consid-

eration given to large-scale structure formation. In a minimal reconstruction of Guth’s develop-

ment of the original theory of inflation, qualitative generalizations of results regarding structure

formation or density perturbations have no place. Thus the theory provides a mechanism for pro-

ducing density perturbations “for free,” without any tinkering. Despite this apparent success, the

same prediction has often been cited as a blatant example of the theory’s malleability—without

tinkering, the theory yielded density perturbations with an amplitude several orders of magnitude

too large. The changes made to bring the prediction within observational constraints led to the

introduction of the inflaton field, whose potential was adjusted to insure density perturbations

with the correct amplitude.

Consider a purely phenomenological approach to inflation: the properties of the poten-

tial V (φ) are to be inferred from observation, with little or no effort devoted to finding a place

for the inflaton in a particular particle physics model. Suppose for the sake of argument that

the basic features of inflation are motivated by the horizon and flatness problems. In the min-

imally adequate reconstruction, these will be invoked to justify the introduction of a stage of

inflaton-driven exponential expansion. In order to constrain the model, a minimally adequate re-

construction must include qualitative generalizations of the crucial CMBR observations (fixing,
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for example, the overall amplitude of the density perturbations). These features would not be

independent with respect to this set of data; however, features independent of the specific form

of the inflaton potential (such as the consistency equation) would be. Incorporating constraints

from particle physics would allow one to increase the number of independent predictions, since

the qualitative generalization from CMBR measurements could be replaced by arguments from

fundamental physics in the reconstruction of inflation.

7.5 Robustness Revisited

Above I listed several allegedly robust predictions of inflation related to the spectrum of

density perturbations. In doing so I neglected recent research which undermines the robustness

of even these predictions. The mechanism by which inflation produces density fluctuations in

the early universe has been studied in detail from the early 80s onward. Calculations of the

spectra of density perturbations produced during inflation rely on a number of assumptions;

recently some of these assumptions have come under fire.20 In particular, recent research by

Brandenberger and Martin shows that the standard inflationary mechanism for producing density

perturbations is sensitive to hidden assumptions about super-Planck scale physics. Another line

of research suggests that the inflaton field’s evolution during ”preheating” may substantially alter

the spectrum of density perturbations left over from earlier stages of inflation due to relativistic

effects. In this section, I will briefly review this work and its implications for testing inflation.

One of the main appeals of inflation is its apparent independence from Planck-scale

physics: almost all of the standard calculations use a scalar field weakly coupled to gravity, or in

20This brief review is by no means exhaustive—these are simply two of the criticisms of the standard
calculations that have been brought to my attention.
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a fixed background spacetime. The inflaton field is assumed to be in a vacuum state prior to infla-

tion, and by evolving the field forward using the linearized equations of motion one computes the

spectrum of fluctuations remaining after the inflationary stage.21 Exponential expansion during

inflation stretches pre-inflationary length scales dramatically, and for some models of inflation

the fluctuations on cosmological length scales after inflation started out as fluctuations with a

physical length shorter than the Planck length (lp = 8.10 × 10
−33

cm). As Brandenberger and

Martin (Martin and Brandenberger 2001; Brandenberger and Martin 2001) point out, one expects

quantum field theory on a flat background (or even the semi-classical approximation) to break

down at these length scales. To estimate the possible impact of new fundamental physics, they

alter the dispersion relations for the initial vacuum state of the inflaton field above some mo-

mentum cutoff. Although some choices of modified dispersion relations do not alter the usual

results, others do; Brandenberger and Martin conclude that:

Our work indicates that the prediction of a scale-invariant spectrum in inflation-
ary cosmology depends sensitively on hidden assumptions about super-Planck scale
physics. (Martin and Brandenberger 2001, p. 2)

If inflation depends sensitively on super-Planck scale physics, as these results suggest, then the

goal of establishing the robust predictions of inflation cannot be attained without significant

advances in fundamental physics.

The assumptions underlying the standard calculations may also break down during a

stage of the inflaton’s evolution called “preheating.” Early inflationary models assumed that

following the inflationary stage, the inflaton energy density would be converted into normal,

thermalized matter. The temperature drops during inflation as energy density is diluted, but the

21See, e.g., Liddle and Lyth (2000), Chapter 4 for a discussion and justification of the assumptions
which go into this calculation.
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inflaton decay “reheats” the universe as the inflaton transfers energy to other fields. Subsequent

research regarding the decay of the inflaton has shown that reheating may be preceded by a

“preheating” stage, during which non-equilibrium processes lead to much more violent and rapid

energy transfer to other fields (associated with parametric resonance). This process takes place

well after the spectrum of density perturbations has been imprinted on the early universe, but

recently Bassett and his collaborators (Bassett et al. 1999, 2000) have argued that various effects

produced during preheating could alter the spectrum. In particular, rather than assuming a fixed

background spacetime throughout preheating, they assess the effects of metric perturbations

coupled (via Einstein’s equations) to the perturbations of the inflaton field. Although the effects

of these metric perturbations are highly model-dependent, in some cases they dramatically alter

the spectra of density perturbations, leading to a spectra resembling that predicted by topological

defect theory rather than the standard inflationary prediction. This research indicates that the

usual neglect of relativistic effects is unjustified during the period of preheating, but whether

these effects will wash out the standard spectra of density perturbations for a large class of

inflationary models remains to be seen.

Both lines of research highlight the difficulty of finding robust predictions for inflation

as long as the connection between inflation and fundamental physics is up for grabs. For some

inflationary models, the effects of super-Planck scale physics and metric perturbations during

preheating do not alter the standard predictions, but in others the implicit assumptions in the

standard calculations neglect a variety of interesting effects. Thus, Liddle and Lyth (2000)’s

optimistic claim that inflation’s prediction for the spectrum of density perturbations does not

share the weakness of earlier predictions (namely, their malleability and model-dependence)

may be premature.
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Appendix A

Aspects of Relativistic Cosmology

A.1 A Primer on General Relativity

In this appendix I will briefly introduce the general theory of relativity, after filling in a

few pieces of the mathematical and technical background needed to formulate the theory. I have

tried to make this review relatively concise and self-contained, but the reader should consult

any of a number of detailed treatments of general relativity (such as Wald 1984), and more

comprehensive introductions to the mathematical ideas (such as Geroch 1985).

GTR is typically presented using the formalism of tensor analysis on differentiable man-

ifolds. Roughly, a differentiable manifold can be thought of as a topological space that locally

looks like R
n. More precisely, a C

∞ differentiable manifold consists of a topological space M

along with a maximal C
∞ atlas. A topological space is a set M with a family {O} of subsets

(the open sets) satisfying the following properties:

(i) {∅,M} belong to {O}

(ii) {O} is closed under unions of an arbitrary collection of members of {O}

(iii) {O} is closed under the intersection of a finite number of members of {O}.

A map between topological spaces f : M → N is continuous if the inverse image f
−1

(O) of

every open set O ⊂ N is an open set in M . A continuous map that is also one-to-one and onto,

with a continuous inverse, is called a homeomorphism. A coordinate chart consists of a pair
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S, φ where S is an open subset of M , φ is a homeomorphism, and φ(S) is an open subset of

R
n. A C

∞ atlas consists of a collection of coordinate charts covering M that are compatible.

Coordinate charts covering overlapping subsets S1∩S2 6= ∅ of M are said to be C
∞ compatible

if the composition φ2 ◦ φ
−1

1
: φ1(S1 ∩ S2) → φ2(S1 ∩ S2) and its inverse are both C

∞. Since

this map and its inverse are both maps from R
n to R

n, we are using the standard definition of

C
∞: a mapping is C

∞ if all higher order derivatives exist and are continuous. Finally, maxi-

mality requires including all of the compatible coordinate charts in the atlas; otherwise, different

choices of charts would lead to “different” manifolds. Hopefully this string of definitions hasn’t

obscured the underlying picture: one can think of a differentiable manifold as “pieces of R
n”

(the subsets mapped into R
n by coordinate charts) pasted together consistently (as required by

the compatibility conditions between charts). Riemann was the first to recognize that (using

modern terminology) the extra flexibility of requiring only local similarity to R
n allows one to

treat a wide variety of spaces with very different global features.

Vector and tensor fields are defined on a differentiable manifold by introducing the tan-

gent space and dual space at each point, along with every conceivable combination of these

spaces. The typical characterization of a vector in R
n as an n-tuple of components relative to

some chosen coordinates does not generalize to manifolds, which usually lack a global chart.

However, the idea of a directional derivative operator can be generalized easily. In R
n these

operators are in one-to-one correspondence to vectors. Denote the collection of C
∞ functions

from open subsets of R
n (O ⊂ R) containing p to R by Sp. The directional derivative of f ∈ Sp

in the direction of a vector u = (u
1
, ...u

n
) is given by:

u(f) = u
1 ∂f

∂x1

∣
∣
∣
∣p + ... + u

n ∂f

∂xn

∣
∣
∣
∣
p

(A.1)
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Directional derivative operators are linear and obey the Leibniz rule (i.e., u(fg) = f(p)u(g) +

u(f)g(p) for f, g ∈ Sp) as a consequence of the properties of partial derivatives. This suggests

an immediate generalization: define a vector at a point p in an arbitrary differentiable manifold

M to be a map u : Sp → R sharing precisely these properties, where Sp is the collection of C
∞

functions from neighborhoods O of a point p to R. (Alternatively, one can introduce tangent

vectors geometrically as tangents to smooth curves passing through the point p.) The collection

of vectors at a given point naturally has the structure of a vector space, and it is called the tangent

space, Tp. Tp has the same dimension as the manifold. In addition, the dual space T
∗
p

is a vector

space (with the same dimension as Tp) composed of linear functionals that map elements of Tp

into R. Elements of the tangent space Tp are often called “contravariant vectors,” symbolized

by “upstairs indices” v
a (in the so-called “abstract index notation”), whereas elements of the

dual space are called “covaraint vectors” (aka one-forms or functionals), and are written with

downstairs indices, ωa. A contravariant vector field (resp., covariant) is a map that assigns an

element of Tp (T ∗
p

) to each point in M . A vector field v is said to be smooth (C∞) if for all

smooth functions f ∈ Sp, the map v(f) : O → R defined by v(f)(p) = v|pf is smooth. (Non-

smooth vector fields are almost never used – sometimes smoothness is even included as part of

the definition of a vector field.) Finally, a tensor of type (r, s) is a multilinear map:

Tp ⊗ · · · ⊗ Tp
︸ ︷︷ ︸

r times

⊗T
∗
p
⊗ · · · ⊗ T

∗
p

︸ ︷︷ ︸

s times

→ R, (A.2)

where multilinear means that the map is linear in each variable treated separately with the other

variables fixed. An (r, s) tensor is written as T
ab...

mn...
, with r upstairs indices a, b, ... and s down-

stairs indices m,n, .... These maps naturally have the structure of a vector space, and a tensor
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field assigns an element of the appropriate tensor space constructed out of Tp and T
∗
p

to each

point.

With this brief tour of the mathematical formalism we now turn to general relativity.

GTR models spacetime as a four-dimensional manifold M equipped with a metric field gab.

The manifold consists of the set of spacetime points, and the fact that 4 numbers are needed to

uniquely specify a spacetime point fits nicely with the requirement of “local” correspondence

with R
4. In addition, the continuity of the manifold matches the continuity of spacetime at the

classical level. The manifold is usually assumed to be Hausdorff, connected, paracompact, and

without boundary. A topological space is Hausdorff if there are always disjoint open sets Op, Oq

containing any distinct points p, q ∈ M . A connected topological space is not the union of any

two disjoint open sets. The closure of a set O (written Ō) is the intersection of all closed sets

containing O, and the interior of the set O is the union of all open sets contained in O. The

boundary of a given set O (written Ȯ) is the set of points in Ō but not in the interior of the set

O. (It follows directly from these definitions that open sets do not contain their boundary points,

whereas closed sets contain all of their boundary points.) The definition of paracompactness

is more involved (see, e.g., Wald 1984, pp. 426-427), so here I will only note one important

consequence: any paracompact manifold is homeomorphic to a metric space.

The introduction of a metric tensor field adds geometrical structure to the manifold topol-

ogy. Intuitively, the metric gab supplies a measure of distance for small displacements on the

mainfold. Acting on a single vector, the metric is an invertible, one-to-one and onto map from

Tp into T
∗
p

. This map corresponds to “raising and lowering” of indices as follows: gabu
a

= ub

and g
ab

ub = u
a, where the inverse of the metric g

ab is defined by gabg
bc

= δ
c

a
(and δ

c

a
is the
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identity map). This gives us a natural inner product between covariant and contravariant vec-

tors. But the metric can also be characterized as a map from Tp × Tp → R, satisfying two

additional requirements. First, it is symmetric, which means that the order of vectors does not

matter: gabu
a
v

b
= gabv

b
u

a, or more succinctly gab = gba. In addition, gab is required to be

non-degenerate, which holds if the determinant of the metric is non-zero. In sum, the metric

field is defined to be a symmetric, non-degenerate rank two tensor field defined everywhere on

M . For a given coordinate chart, the metric can be written as ds
2

= gijdx
i
dx

j with summation

over i, j understood, and gij are the components of the metric tensor in this chart. In the tangent

space, one can always find a coordinate basis that “diagonalizes” the metric, i.e. for basis vectors

e
1
...e

n, gije
i
e
j

= 0 for i 6= j, and = ±1 for i = j. The signature of the metric specifies the

sign of the diagonal elements; GTR uses a Lorentzian metric with signature written as either

(− + ++) or (+ − −−), where I will take the former convention throughout. This signature

gives the tangent space the familiar light cone structure of Minkowski space; tangent vectors

u
a ∈ Tp are classified as follows: timelike, gabu

a
u

b
< 0; spacelike, gabu

a
u

b
> 0; and null,

gabu
a
u

b
= 0.

Next we need to introduce the structure used to compare vectors from tangent spaces

at different points: the affine connection. Roughly, the connection generalizes the notion of

parallelism from Euclidean space to curved spaces. For a vector u
a ∈ Tp and a curve in M

connecting p to q, the connection can be used to define a vector u
′a that results from “moving u

a

along the curve, keeping it parallel to itself” (parallel transport). In Euclidean space, parallely

transporting a vector around a closed loop produces the same vector, but for a curved manifold

this is generally not the case. The sphere is a standard example: carry a tangent vector on the

surface of a sphere around a triangle consisting of a quarter of the equator and an excursion up
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to the north pole and back; this yields a vector rotated 90
◦ with respect to the original. The

most natural way to define the connection is in terms of the fiber bundle formalism, which I

will not introduce here.1 But I will note that there is a unique connection, called the Levi-

Civita connection, satisfying the following three requirements: (i) the “output” u
′a depends

linearly on u
a, (ii) the connection is compatible with the metric, and (iii) there is no torsion. The

second condition holds if a parallely transported tangent vector does not change length; formally,

∇agab = 0. Finally, (iii) can be characterized as follows. Consider parallely transporting a

vector (in R
n) εu

a in the v
b direction by an infinitesimal amount ε, and similarly transport εv

b

in the direction u
a. If the resulting figure is a closed parallelogram (to order ε

2), the connection

is torsion free, and the vectors have not “rotated” under parallel transport. The connection is

often first introduced in the guise of the covariant derivative operator, denoted ∇a. Taking the

derivative of a vector field in R
n requires comparing the value of the field at a point with the value

at neighboring points; the connection makes it possible to give a path-dependent comparison of

vectors in neighboring tangent spaces. In addition, it is linear and satisfies the Leibniz rule

characteristic of derivatives. For given coordinates, the covariant derivative of a vector is given

by ∇av
b

= ∂av
b
+ Γ

b

ac
v

c, where Γ
b

ac
are the coordinate components of the connection. (This

formula generalizes in a straightforward way to covariant derivatives of tensor fields.)

We will need two more concepts before formulating the field equations. First, in a curved

geometry the straightest possible lines are those that remain parallel to themselves. A geodesic

is a curve such that its tangent vector remains parallel to itself as it is parallely propagated along

1In some senses the fundamental insights of GTR can be introduced more clearly using the connection
and the fiber bundle formalism (and it is clearer how GTR generalizes Newtonian gravitation); see Stachel
(2001) for a counterfactual fable in which “Newstein” formulates GTR using the affine connection. See
Baez and Muniain (1994) for a very readable introduction to the fiber bundle formalism, which I draw on
here.
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the curve; symbolically, v
a∇av

b
= 0. (The right hand side of this equation is 0 only if the

curve is affinely parameterized, otherwise a non-zero term function of the parameter appears on

the right.) Second, the path dependence of parallel transport depends upon the curvature of the

surface, which is fully characterized by the Riemann curvature tensor R
d

abc
. The connection

with parallel transport can be understood as follows. Imagine parallely propagating a vector u
a

around a parallelogram whose sides are given by εv
a and εw

a, where ε is a small number. To

order ε
2, the result of parallel transport, u

′a, is given by

u
′a

= u
a − ε

2
R

a

bcd
v

b
w

c
u

d
. (A.3)

The second term on the RHS characterizes the departure from flat space. The Riemann curvature

tensor can be expressed directly in terms of the metric tensor and its first and second derivatives,

although I will not provide the details here.

Curvature is manifested directly by geodesic deviation. Suppose we have a family of

“infinitesimally neighboring” timelike geodesics, such that the tangent to the worldlines is u
a,

and ξ
a is the “deviation vector” between neighboring curves (i.e., a spacelike vector orthogonal

to u
a). Here it may be useful to visualize a swarm of particles: changes in ξ

a correspond to

the swarm converging or diverging. The “relative acceleration” of neighboring geodesics is then

given by (see, e.g., Wald 1984, pp. 46-47):

a
c
= u

a∇a(u
b∇bξ

c
) = −R

c

abd
ξ
b
u

a
u

d
(A.4)
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This equation contains a great deal of information regarding how the congruence of geodesics

responds to curvature, but very roughly, for positive curvature the geodesics converge, whereas

negative curvature leads to divergence. Two tensors derived from R
d

abc
by contraction appear in

EFE. The contraction of a rank n tensor is an n − 2 tensor obtained by summing over repeated

indices. The Ricci tensor is defined by Rac = R
b

abc
. Further contracting the Ricci tensor, we

have the Ricci scalar R = R
a

a
.

Now we have introduced two of the quantities appearing on the left hand side of EFE:

Rab −
1

2
Rgab + Λgab = κTab. (A.5)

The right hand side is based on one of the hard-won insights of early relativistic mechanics: the

appropriate mathematical object for representing momentum and energy density is the stress-

energy tensor, a symmetric rank two tensor that obeys the covariant conservation law ∇a
Tab = 0

(more on this in a moment). The left hand side is the most general symmetric tensor that can be

constructed from the metric and its first and second derivatives. The cosmological constant Λ can

be treated as a geometric term in the EFE (appearing on the LHS), but it can also be introduced

on the RHS as a component of Tab — although usually a field only “mimics” a true Λ term.

The stress-energy tensor fully characterizes the energy and momentum of a system;

roughly, it keeps track of energy density and momentum flow in different directions. Contract-

ing with two vectors at a point gives Tabu
a
v

b, which represents the flux of four-momentum u
a

flowing through the point in the v
b direction. Cosmologists often use “perfect fluids,” where

perfect means that the fluid completely lacks pressure anisotropies, viscosity, and shear stresses.

As a result the only non-zero components lie along the diagonal if Tab is written out as a matrix;



279

the Ttt component represents the energy density ρ, and the only nonzero spatial components Tii

(where i = x, y, z) give the pressure p. The stress-energy tensor for a perfect fluid is given by

Tab = (ρ + p)uaub + pgab, (A.6)

where u
a represents the velocity of the perfect fluid. More generally, the stress-energy tensor for

a given field is defined in terms of a variational derivative of its Lagrangian (see, e.g., Appendix

E in Wald 1984).

A diffeomorphism is a one-to-one, onto map φ : M → M
′ that is C

∞, with a C
∞

inverse; this preserves all manifold structure. See, for example, Wald (1984, Appendix C) for a

discussion of how diffeomorphisms act on vector, dual vector, and tensor fields. An isometry is

a diffeomorphism φ that maps the metric into itself, i.e. φ ∗ gab = gab.

A.2 FLRW models

Here I will briefly review the ubiquitous FLRW models and highlight the aspect of FLRW

dynamics dubbed the “flatness problem.” These models are based on the fundamental assump-

tions of homogeneity and isotropy. Homogeneity and isotropy together entail that the models are

topologically Σ×R, where the three-dimensional surfaces Σ are orthogonal to the wordlines of

fundamental observers. The spatial geometry induced on the surfaces Σ is such that there is an

isometry carrying any p ∈ Σ to any other point lying in the same surface (homogeneity), and at

any p the three spatial directions are isometric (isotropy).
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Any line element compatible with these symmetry requirements can be written in the

following form:

ds
2

= −dt
2
+ a(t)

2

(

dr
2

1 − kr2 + f(r)
2
(dθ

2
+ sin

2
θ dφ

2
)

)

, (A.7)

where k classifies the three distinct possibilities for the curvature of the Σ surfaces: positive,

k = +1 corresponding to spherical space, with f(r) = sin r; zero for flat space, f(r) = r; and

negative curvature (k = −1) corresponding to hyperbolic space, f(r) = sinh r. Furthermore,

imposing isotropy and homogeneity implies that the source term is the stress-energy tensor for

a perfect fluid, eqn. (A.6). Both p and ρ are functions only of the cosmic time t, with no spatial

variation. (Alternatively one can stipulate that the source term is given by this equation and

derive the line element above.)

In general, the EFE reduce to a set of 10 coupled non-linear equations, but for isotropic

and homogeneous models we have a much simpler situation: two independent equations. Take

v
a to be the normalized four velocity of the perfect fluid, and choose the coordinates of the

line element above, in which vt = 1 and vi = 0 where i ranges over the spatial coordinates

(r, θ, φ). Symmetry dictates that the Einstein tensor in these coordinates, Gµν , is non-zero only

for Gtt and Gii.
2 Rewriting the field equations for Gtt in terms of the scale factor a, we have the

“Friedmann equation”:
(

ȧ

a

)2

+
k

a2 =

(
8π

3

)

ρ +
Λ

3
. (A.8)

2A nonzero component Git would provide a geometrically preferred spatial direction, in violation of
isotropy, and isotropy further implies that the metric of the homogeneous surfaces is diagonal in these
coordinates. See, in particular, Weinberg (1972), Chapter 15, and Wald (1984), Chapter 5 for clear
derivations of the FLRW dynamics.
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The Gii terms all yield the same equation, namely

2
ä

a
+

(
ȧ

a

)2

+
k

a2 = −8πp + Λ. (A.9)

The difference of these two equations yields the following equation for the evolution of the scale

factor:

ä

a
= −4π

3
(ρ + 3p) +

Λ

3
. (A.10)

Finally, the following equation represents stress-energy conservation:

ρ̇ = −3(ρ + p)
ȧ

a
. (A.11)

Derivations of FLRW dynamics often use the equations (A.8, A.11) as their starting point, but in

fact the three equations (A.8, A.9, A.11) are not independent due to the Bianchi identities.

Rewriting the Friedmann equation (A.8) in terms of the density parameter, Ω, which

represents the total energy density and is defined as the ratio Ω ≡ ρ
ρcrit

, brings the flatness

problem into focus. The critical density is the value of ρ such that k = 0 in the Friedmann

equation, namely

ρcrit =
3

8π

(

H
2 − Λ

3

)

, (A.12)

where I have introduced the inappropriately named (time dependent) Hubble “constant,” H = ȧ
a .

Now plugging all of these new quantities into the Friedmann equation, after some algebra we

have:

|Ω − 1|
Ω

=
3|k|

8πρa2 . (A.13)
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If the rest-mass energy density is negligible, the energy density is diluted with expansion, ρ ∝

a
−3γ

(t) (with γ = 4/3 for radiation and γ = 1 for pressureless dust, for example). Thus, the

time dependence of the density parameter is related to the scale factor as follows:

|Ω − 1|
Ω

∝ a
3γ−2

(t) (A.14)

As the scale factor grows with the expanding universe, if the value of Ω differs from 1 it evolves

rapidly away from 1; in other words, the value Ω = 1 is an unstable fixed point for dynamical

evolution governed by the Friedman equation (with γ > 2/3). Despite this instability, obser-

vations indicate that the present value of the density parameter lies in the range 0.1 ≤ Ω0 ≤

1.5.3 In order to fit these observations, the value of the density parameter at the Planck time

(tp = 10
−43

s) must have been extraordinarily close to one, |Ω(tp) − 1| ≤ 10
−59.4 Thus the

early universe must have been incredibly close to the “flat” FLRW model, Ω = 1, k = 0. This

straightforward calculation turns into the flatness problem when one adds the judgement that

such a finely tuned value of Ω(tp) is highly unlikely.

Two points follow immediately from the equations above. First, it is clear how to alter

the Friedmann equation to insure that dynamical evolution drives Ω(t) towards rather than away

3This is a very conservative estimate of Ω0. Briefly, evidence places different constraints on the
different components of Ω. Coles and Ellis (1997), pp. 199-203, give a best estimate of Ω0 ≈ 0.2, with
Ωbaryon < 0.10 based on element abundances and the total matter contribution (including non-baryonic
dark matter) ΩM ≈ 0.20 based primarily on estimates of the masses of galaxy clusters and large scale
motions. The observational constraints on ΩΛ are much weaker than those on the matter density, since
the overall effect of a small non-zero Λ on large scale motions is quite small. Coles and Ellis (1997) favor
Ω0 = ΩM ≈ 0.2, but models with Ω0 ≈ 1—with Ω Λ ≈ 0.80 to be accounted for by “dark energy” or
“quintessence”—are compatible with observations. Observations of the magnitude-redshift relation for
type Ia supernovae support a universe with a large ΩΛ component. Following the report of these results
in 1998 (and for a number of other reasons), a model with Ωtotal ≈ 1, with ΩΛ ≈ 0.7 and ΩM ≈ 0.3 has
become widely accepted.

4See, e.g., Blau and Guth (1987), pp. 532-534 for this calculation. The flatness problem is often
described in terms of the balance between the kinetic energy of expansion (the H

2 term) and the gravita-
tional potential energy (the ρ term) in equation A.8 (Dicke and Peebles 1979).
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from one. The value of γ in (A.14) depends upon the equation of state of the idealized fluid one

takes to represent the matter-energy content of the universe. The equation of state of a perfect

fluid may be written as p = (γ − 1)ρ, where p is the pressure, ρ the density, and the index γ

is used to classify different types of fluids. From equation (A.14), for γ < 2/3, the density

parameter evolves towards one. In the inflationary scenario, during the inflationary stage γ = 0

(for most models of inflation) and the density parameter is driven towards one. (In power-law

inflation or “coasting” models, during the inflationary stage γ = 2/3, so the inflationary stage

does not drive Ω towards one for these models.) Thus, an inflationary stage can serve to drive

arbitrary values of Ω(tp) closer to one by the end of the inflationary stage, enlarging the range of

initial values compatible with observational constraints on Ω0. For the usual models of inflation,

|Ω0 − 1| << 1, although there are a number of “open models” that yield Ω0 < 1 (see, e.g., Lyth

and Riotto 1999). Second, the usual rendition of the flatness problem neglects to mention that

for all FLRW models, if γ > 2/3 then lima→0 Ω = 1, regardless of the value of Ω0. Due to this

feature of Friedmann dynamics, extrapolating any value of Ω0 back to the Planck era yields an

initial value of Ω(tp) very close to one. In other words, the early universe is “flat” regardless of

the present energy density.

I will close with a brief comment comparing the kinematical quantities (the shear, vor-

ticity, and volume expansion) in the FLRW models to a more general (non-symmetric) case. In

general these quantities are local characteristics of the “flow” of fundamental observers, but in

the FLRW models the volume expansion is directly related to a global quantity, the scale fac-

tor a(t). One can treat the overall matter distribution as a fluid and use the average velocity of

matter at each point to define a 3 + 1 split (projecting into the spacelike surface orthogonal to

the velocity vector), and then define kinematical quantities characterizing the fluid flow. More
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precisely, given a congruence of timelike geodesics v
a, normalized so that v

a
va = −1, one

can define a projection tensor hab into the subspace of the tangent space orthogonal to v
a as:

hab = gab + vavb. The fundamental kinematical quantities are then defined by:

∇bva =
1

3
θhab + σab + ωab. (A.15)

θ is a scalar quantity representing volume expansion along the flow, σab measures volume-

preserving shear, and ωab is the vorticity tensor, which fixes both an axis and speed of rotation.

(See, for example, section 2 of Ellis and van Elst (1999) for a concise review of this approach.)

For the “flow” defined by fundamental observers in an FLRW model, the shear and vorticity

both vanish and the volume expansion is directly related to the scale factor, θ = 3(ȧ/a); for

non-FLRW models one can take this equation as a definition of the scale factor, demoted to a

local rather than global property.

A.3 Horizons

The cosmologists’ lexicon includes a number of different entries under “horizon,” but

behind this sometimes bewildering variety lies the common idea that a horizon measures the

maximum distance light travels during a fixed time period. Rindler (1956)’s classic paper de-

fined an observer’s particle horizon as a surface in a three-dimensional hypersurface of constant

cosmic time t0 dividing the fundamental particles which could have been observed by t0 from

those which could not.5 More intuitively, the worldlines of particles inside this horizon intersect

the observer’s past light cone, whereas the worldlines of particles beyond the horizon do not.

5See Ellis and Rothman (1993) for a more recent (and remarkably clear) discussion of horizons.
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Rindler’s definition applies to fundamental observers/particles in an FLRW model, i.e. those

moving along geodesics. Although it would be preferable to remove this restriction (as Mac-

Callum (1971) pointed out, the focus on fundamental particles leads to difficulties in applying

Rindler’s definition to non-FLRW spacetimes), in the following I will stick with standard usage.

The coordinate distance traveled by a light signal emitted from an observer at re with

emission time te reaching another observer at r0 = 0, t0 is given by:

u =

∫ re

0

dr
√

1 − kr2
=

∫ t0

te

dt

a(t)
. (A.16)

This calculation is quite simple due to the symmetry of the FLRW model: thanks to isotropy

we can focus on radial null geodesics without loss of generality, setting dθ = dφ = 0. For

null geodesics ds
2

= 0, leading to the following equality for radial null geodesics: dr√
1−kr2

=

± dt
a(t) , where + corresponds to inward-going geodesics, and − to outward-going.. Although the

behavior of a(t) must be specified in order to calculate the integral, the integral converges as

long as a(t) ∝ t
n with n < 1, which holds for matter or radiation dominated FLRW models.

The physical distance from the observer at r0 to the horizon, measured at t0, is then d = a(t0)u.

Here I am following the conventional choice to define horizon distance in terms of the time when

the signal is received rather than the time of emission (as signalled by the a(t0) term).

By changing the limits of integration we can define three different horizon distances.

Taking the time of emission to approach the initial singularity we have an expression for the

particle horizon:

dph = lim
t→0

a(t0)

∫ t0

t

dt

a(t)
(A.17)
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This integral converges in the FLRW models, yielding a finite value for dph. Light emitted from

fundamental particles at a distance greater than dph, even the light emitted from arbitrarily early

times, cannot reach an observer at r = 0 by the time t0. The past light cones of points separated

by a distance greater than dph do not overlap. The visual horizon and primeval particle horizon

(following the terminology of Ellis and Stoeger 1988) are defined in terms of the decoupling

time td, when photons decouple from matter (before td the early universe is opaque). The visual

horizon measures the distance of the farthest visible fundamental particles (whose light emitted

at or after the decoupling time td reaches r0 by t0):

dvh = a(t0)

∫ t0

td

dt

a(t)
(A.18)

Finally, the primeval particle horizon is simply the particle horizon evaluated at td:

dpph = lim
t→0

a(t0)

∫ td

t

dt

a(t)
(A.19)

For the standard big bang model—a radiation-dominated phase followed by a matter-dominated

phase—a straightforward calculation yields the inequality:

dpph << dvh (A.20)

Points on the surface of last scattering separated by distances greater than dpph are not in causal

contact (see Fig. 2.1). If the FLRW models accurately describe the early universe, our obser-

vations of the surface of last scattering encompass several regions lying beyond each other’s

horizons.
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The effect of an inflationary stage on the horizon problem can perhaps best be illustrated

by comparing the horizon distances in two simple models: a model that is radiation dominated

until td, and then matter dominated, compared to a model with an inflationary stage lasting from

ti to tf , sandwiched between two radiation dominated phases (from t0 to ti, and tf to td) and

followed by a matter dominated phase. For the model without inflation the horizons are given

by:6

dpph =
1

H0

(
ad

a0

)1/2

(A.21)

dvh =
2

H0

(
ad

a0

)1/2
[(

a0

ad

)1/2

− 1

]

, (A.22)

where H0 is the Hubble constant at t0 and a0, ad are the values of the scale factor at t0, td. The

inequality above (A.20) follows since a0/ad ≈ 1000. For a simple inflationary model dvh still

has the same value, whereas the primeval particle horizon is given by:

dpph =
1

H0

(
ad

a0

)1/2 (

1 + 2

(
af

ad

)[
af

ai

− 1

])

, (A.23)

where af , ai represent the scale factor at ti, tf . Typical inflationary models have a number of

“e-foldings” Z , defined as
af

ai
= e

Z , greater than 65. The factor
af

ad
is typically on the order of

10
−24. Thus the overall of effect of incorporating an inflationary stage is to multiply dpph by a

number > 10
4, reversing the inequality in (A.20).

6These equations are derived by integrating the contribution to the horizon distance at each stage,
given the behavior of a(t), and then requiring continuity of a, ȧ at the boundaries between the stages; see
Ellis and Stoeger (1988, Appendix).
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A.4 Causal Structure

The study of global causal structure of relativistic spacetimes developed along with ef-

forts to prove the singularity theorems, since these theorems required some degree of “control”

over global aspects of spacetime. Below I will briefly discuss various causality conditions, which

can roughly be thought of as characterizing the ways in which global causal structure resembles

or departs from the “nice” behavior of Minkowski space. Then I will turn to boundary construc-

tions.

The tangent space at any p ∈ M has the familiar causal structure of Minkowski space.

Study of the causal structure of spacetime focuses on the conformal geometry of spacetime since

the light cone structure depends on the metric only up to a conformal factor. The causal structure

can depart significantly from that of Minkowksi space locally and globally since the tangent

spaces may be “tilted” with respect to each other.

The discussion below will focus on the causal sets J
±
(p) and I

±
(p). In order to even

define these sets consistently, a spacetime must be time orientable, which requires the existence

of a continuous, nowhere-vanishing vector field that makes a globally consistent designation

of one half of the null cone as the “future lobe” possible. (Choosing which half should be so

designated is part of the problem of the direction of time, but without this condition no consistent

global specification is possible.) A piecewise smooth curve is timelike (resp., null) if its tangent

vectors u
a are timelike (null) at each point of the curve; a timelike curve is future (resp., past)

directed if its tangent vectors lie in the future (past) lobe of the light cone at every point. A

point p chronologically precedes q (symbolically, p << q), if there is a future-directed timelike

curve of non-zero length from p to q. Similarly, p causally precedes q (p < q), if there is a
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J   (p)

I   (p)

null

spacelike p

timelike

(includes interior and cone)
−

−
(interior only)

Fig. A.1 This figure illustrates the null cone structure of Minkowski spacetime, which also holds in the
tangent space at any point in a general relativistic spacetime. Regions corresponding to the causal sets are
identifed (note that these are sets of points in M and not in the tangent space).

future-directed curve with tangent vectors that are timelike or null at every point. Finally, the

causal sets are defined in terms of these relations (as illustrated in figure A.1): I
−
(p) = {q :

q << p}, I
+
(p) = {q : p << q}, the chronological past and future, and J

−
(p) = {q : q <

p}, J
+
(p) = {q : p < q}, the causal past and future. These definitions generalize immediately

to spacetime regions: for the region S, I
+
(S) = ∪p∈SI

+
(p).

The various causality conditions are reflected in the properties of the causal sets J
±
(S)

and I
±
(S). In the standard manifold topology, I

±
(S) are always open sets, but J

±
(S) are

generally neither open nor closed. J
+
(S) fails to be closed if, for example, ∃q ∈ İ

+
(S) such

that q is not in J
+
(S). A spacetime is causally simple iff the J

±
(S) sets are always closed.

Turning to the boundaries of these sets, it is intuitively clear that the boundary İ
+
(S) consists of
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null surfaces, since some points on either side of a timelike or spacelike surface can be connected

with timelike curves (similarly with + replaced by −). More precisely, İ
+
(S) is called an

achronal boundary since no two points in the boundary lie in each others’ chronological pasts

(see Hawking and Ellis 1973, Prop. 6.3.1 for further properties of this surface). Any given point

q ∈ İ
+
(S) lies either in the closure of S or in a null geodesic generator of the boundary. In

Minskowski spacetime, or locally in a general relativistic spacetime, the boundary is “ruled” by

null geodesic generators with past endpoints on the closure of S; but in general the generators

may encounter “missing points” before reaching S. A very strong causality condition, global

hyperbolicity, insures that the generators of the boundary in a general spacetime have the same

properties as in Minkowski spacetime. A globally hyperbolic spacetime possesses a Cauchy

surface, a spacelike surface Σ without edge intersected exactly once by every inextendible null

or timelike curve. (See Hawking and Ellis 1973; Wald 1984 for further discussion of the various

equivalent definitions of global hyperbolicity.) In a globally hyperbolic spacetime, the EFE

admit a well-posed initial value formulation: specifying appropriate initial data on a Cauchy

surface Σ determines a unique solution to the field equations (up to diffeomorphism invariance).

In addition, the topology of a globally hyperbolic spacetime is Σ × R, and the Cauchy surfaces

correspond to the level surfaces of a global time function; however, the foliation is not unique.

A brief discussion of some formal machinery due to Penrose helps to illustrate the intu-

ition behind these constructions: he defines a “TIP,” a terminal indecomposable past set, to be the

past of a future-directed curve γ (Penrose 1979). Unlike a “PIP,” a proper indecomposable past

set, which is the chronological past I
−
(p) for some p ∈ M , a TIP can be thought of roughly as

the past of the “boundary point” reached by γ. Obviously a TIP will not pick out a unique curve;

instead an equivalence class of curves approaching the same boundary point correspond to the
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same TIP. Finally, a singular TIP corresponds to a curve γ with finite proper length. More ab-

stractly, one defines a set of boundary points on the manifold by identifying equivalence classes

of incomplete curves approaching the same boundary points. One also needs to add a topology

connecting the boundary points and the interior of the original manifold M .

A.5 No-Hair Theorems

The cosmic no-hair conjecture, originally proposed by Gibbons and Hawking (1977),

holds that for fairly general initial conditions a period of Λ dominated exponential expansion

“smooths out the wrinkles” of an initially inhomogeneous model. This appendix briefly reviews

the first component of a no-hair theorem, i.e., proofs that a transient effective Λ leads to a “locally

de Sitter” solution. Several counterexamples, such as closed FLRW models which recollapse

before reaching an inflationary stage or the generalized Schwarzschild solution with positive Λ,

show that such a theorem cannot hold in full generality—hence the vague phrase “fairly general

initial conditions.” A locally de Sitter solution resembles the de Sitter solution in that it has nearly

flat spatial sections and a constant volume expansion rate θ = (Λ/3)
1/2 (the expansion rate for

de Sitter), but the global structure may differ. The volume expansion rate is defined in terms of

the spatial metric hab: for a smooth congruence of timelike geodesics, generated by the vector

field ξ
a (normalized so that ξaξ

a
= −1), the metric can be decomposed as gab = hab − ξaξb.

The volume expansion rate is then given by θ = ∇b
ξ
a
hab(see, e.g. Wald 1984, §9.2, for a much

more detailed discussion).7

7For further discussion of the definition of a “locally de Sitter” spacetime, see Wald (1983); Goldwirth
and Piran (1992).
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Wald (1983) proved a no-hair theorem for anisotropic, homogeneous models with a pos-

itive Λ satisfying the constraints that (3)
R ≤ 0, where (3)

R is the curvature of the homogeneous

spatial sections, and that the strong and dominant energy conditions hold for Tab (excluding Λ).8

The theorem proceeds by showing that the following equation follows from Raychaudhuri’s

equation, the field equations, and the energy conditions:

−θ̇ ≥ θ
2 − Λ

3
≥ 0. (A.24)

In other words, given these assumptions it follow that the expansion rate is decreasing ( θ̇ is neg-

ative). If the universe is initially expanding the expansion rate is bounded below by the de Sitter

value; integrating eqn. (A.24) shows that the expansion rate rapidly approaches the de Sitter

value. Jensen and Stein-Schabes (1987) generalized Wald’s result slightly to inhomogeneous

models satisfying the similar restriction that (3)
R ≤ 0 everywhere. In Wald’s case the homo-

geneous spatial sections can be defined naturally, but in the latter proof the three curvature is

defined in terms of the spatial sections according to a synchronous coordinate system.9 There

are several reasons for dissatisfaction with these results: as Goldwirth and Piran (1992) point

out, the synchronous coordinate system required by the proof probably does not cover the en-

tire region of interest, and requiring (3)
R ≤ 0 everywhere is a very strong restriction (it fails if

8The dominant energy condition requires that −T
a

b
ξ

b is future-directed timelike or null for all future-

directed and timelike ξ
a; physically, this condition states that a comoving observer measures a non-

negative local energy density and the vector representing energy flow is timelike or null. The strong
energy condition requires that (Tab − 1

2gabT )ξ
a
ξ

b ≥ 0. It is important to note that these conditions must

hold throughout the inflating region for the theorem to hold. Wald does not actually state (3)
R ≤ 0 as a

condition of the proof; instead he shows that it holds in all the Bianchi models except type IX.
9In a synchronous coordinate system the metric can be written as gab = hab−ξaξb; the timelike vector

fields ξa are orthogonal to the spatial hypersurfaces. Synchronous coordinate systems break down when
the curves generated by ξa cross, and as a result these coordinate system do not cover large regions of
spacetime in the presence of strong gravitational fields.
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any region undergoes collapse); in addition, there are a number of “defeating conditions” for a

completely general result, such as the presence of primordial magnetic fields.10

A.6 Conservation Laws

In general relativity the stress-energy tensor Tab characterizes the sources of the gravi-

tational field. Typical presentations of general relativity duly note that the stress-energy tensor

obeys the following conservation law:11

∇a
Tab = 0. (A.25)

Here I will briefly review arguments that unlike the familiar conservation laws of classical me-

chanics, this covariant conservation law does not underwrite the claim that local interactions

conserve total energy of the interacting systems.12 As we will see, the accounting fails due to

difficulties incorporating the energy of the gravitational field itself. This difficulty illustrates

the global nature of energy conservation in GTR, since definitions of energy and momentum

and the corresponding conservation laws can be recovered globally (“at infinity”) for spacetimes

representing an isolated system.

10See Rothman and Ellis (1986) for a more detailed criticism of Jensen and Stein-Schabes (1987) and
other earlier results; although they criticize the earlier arguments, Rothman and Ellis ultimately support
the same conclusions (modulo a few caveats).

11This holds as a consequence of Einstein’s field equations and the Bianchi identities ∇[aR
e

bc]d
= 0,

which imply that ∇b
Gab = 0. Einstein’s insistence that energy-momentum conservation holds was one

of the crucial physical requirements in his search for the gravitational field equations (see Chapter 1).
12Energy conservation in general relativity has recently been discussed in the philosophy of physics

literature by Hoefer (2000) and by Erik Curiel; I have also benefitted from discussions with Curiel on this
subject.
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In most familiar cases from classical and special relativistic physics, during interactions

energy is transferred continuously from one system to another.13 These continuity properties

depend upon conservation laws, which in this case can be given equivalent differential or inte-

gral formulations. Roughly speaking, differential conservation laws guarantee that energy flows

continuously through individual spacetime points. On the other hand, integral conservation laws

govern the flow of energy into and out of finite regions of spacetime. But the difference between

the two is only a matter of mathematics. The equation of motion for a perfect fluid in special

relativity subject to no external forces has the form ∂
a
Tab = 0, which is a differential conserva-

tion law (the fluid has no sources or sinks). In special relativity, the energy-momentum density

ascribed to a particular point depends upon the state of motion of the observer; technically, one

obtains the “energy density,” a scalar quantity, by contracting Tab twice with timelike vectors

corresponding to the observer’s four velocity. A family of inertial observers with four-velocities

u
a at rest with respect to each other (so ∂au

b
= 0) will measure an energy-momentum current

given by Ja = −Tabu
b, and it follows immediately that ∂

a
Ja = 0. Integrating Ja over a fi-

nite spacetime region V with a boundary S and then using Gauss’s law, we have the integral

conservation law:14

∫

V
∂

a
Jad

4
V =

∫

S
Jan

a
dη = 0. (A.26)

Imagine that the surface S consists of two spacelike “caps” Σ1 and Σ2 joined by a tube. The inte-

gral conservation law guarantees that the difference in energy-momentum-density flux between

13The difficulties with giving a local definition of gravitational energy in Newtonian gravitation fore-
shadow the problems in GTR.

14The unit normal to the boundary S is n
a, conventionally defined to be “outward pointing” for space-

like surfaces and “inward pointing” for timelike surfaces, and dη is the natural volume element for this
surface.
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the two caps must be compensated by a flux through the sides of the tube; if the flux through the

sides is zero, then the flux through the caps is conserved.

In general relativity, the differential and integral formulations are not two sides of the

same coin. The fundamental problem is that we need to extract a suitable quantity from Tab to

integrate over spacetime regions, since there is no way to directly integrate tensor fields over

a curved manifold. Hitting Tab with a single timelike vector u
b yields Ja as mentioned above;

hitting Tab twice yields the energy density, a scalar quantity. In the previous paragraph we took

advantage of a family of observers at rest with respect to each other to define a rest frame and the

corresponding Ja. In Minkowski spacetime the worldlines of these observers are both geodesics

and the integral curves of a timelike Killing vector field, defined as a vector field u
a such that

∇aub+∇bua = 0 (this obviously holds for u
a above).15 In the general relativistic case we would

like to choose a vector field u
b such that ∇a

(−Tabu
b
) = 0 follows from the covariant conser-

vation law (A.25), and only a timelike Killing vector field will do.16 But in general solutions to

EFE there are no Killing vectors to be had; requiring a timelike Killing vector is equivalent to

postulating a time-translation symmetry, in that an observer moving along the orbit of the Killing

vector field sees no change in the geometrical properties of spacetime. Thus in general there is

no way to turn the covariant conservation law into an integral conservation law. This reflects the

difficulty in accounting for the energy which a system gains or loses through interactions with

the gravitational field. Textbook presentations of general relativity (such as Weinberg 1972)

sometimes introduce a pseudo-tensor tab representing the stress-energy of the gravitational field

15The fact that these worldlines are geodesics is responsible for the zero on the RHS of ∂
a
Tab = 0; for

non-geodesic motion there is a non-zero term representing an external force.
16For a Killing vector field u

b, ∇a
(Tabu

b
) = (∇a

Tab)u
b
+ Tab∇

a
u

b
= 0. The first term vanishes by

eqn. (A.25), and the second term vanishes since Tab∇
a
u

b
= T(ab)∇

[a
u

b]
= 0.



296

itself. It is only a “pseudo” tensor because it does not have the transformation properties of a

tensor— as a consequence of the equivalence principle, one can always choose coordinates lo-

cally such that tab vanishes. Gravitational energy differs from the energy-momentum carried by

matter fields since it can always be locally “transformed away.”

Despite the difficulties with defining the energy and momentum of the gravitational field

locally, these quantities and their conservation laws can be formulated globally for asymptoti-

cally flat spacetimes. Since the 60s powerful techniques have been developed to analyze isolated

gravitational systems in terms of the behavior of various quantities “at infinity” in a coordinate-

independent manner. To study these quantities one constructs the conformal completion of the

given spacetime, which roughly corresponds to “adding in” points at infinity. Although one can

construct conformal completions for a wide variety of spacetimes, for asymptotically flat space-

times the conformal completion resembles the conformal infinity of Minkwoski spacetime.17 In

this context one can define energetic quantities and prove conservation theorems regarding them.

17There are a number of conditions required for the construction of the conformal completion. Roughly,
one requires the existence of a spacetime M̃, ˜gab, which consists of the union of the physical spacetime

(M, gab) and the asymptotic region I, and a conformal isometry such that g̃ab = Ω
2
gab on M . A

spacetime is asymptotically flat if the conformal completion satisfies a number of additional conditions
imposed on the conformal factor Ω and the structure of the asymptotic region, which enforce similarity to
conformal infinity in Minkowski spacetime (see, e.g., Wald 1984, pp. 276 f.).
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Appendix B

Topics in Quantum Field Theory

B.1 Spontaneous Symmetry Breaking

For a rough idea of the meaning of symmetry breaking in QFT, begin with the phase

space Γ for some simple classical system. The dynamics of the system are given by specifying a

Hamiltonian function, H , a real-valued function on Γ that gives the energy of the state. Dynam-

ical trajectories are the integral curves of a vector field obtained from H by introducing further

geometric structure (namely, the symplectic form). A symmetry of the theory corresponds to

the action of some Lie group G on Γ such that the Hamiltonian is invariant; the action of such

a group maps dynamical trajectories into dynamical trajectories. Suppose that we are dealing

with a system whose quantum description, in terms of an operator algebra A and a Hilbert space

of states, can be constructed directly from Γ (e.g., by canonical quantization). The action of G

can be naturally extended to the operator algebra A, resulting in a group of automorphisms on

the algebra. SSB reflects a mismatch between symmetries defined at this algebraic level and

symmetries on the Hilbert space of states. A symmetry g ∈ G is spontaneously broken when

the corresponding automorphism cannot be defined as a unitary transformation on the Hilbert

space (i.e., it cannot be “unitarily implemented”). Since picking out a particular vacuum state

determines the Hilbert space representation of A, we can translate this into a statement regarding

vacuum expectation values. In particular, a symmetry g is spontaneously broken if the vacuum
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expectation value of some operator is non-invariant under the action of the associated automor-

phism on A.

Rather than filling out this characterization, I will shift gears and focus on the connection

between symmetry breaking and conserved currents in order to clarify the claim that a broken

symmetry is not unitarily implementable.1 Nöther’s seminal theorems link symmetries of the

Lagrangian to conserved currents. Nöther’s first theorem establishes that there are n conservation

laws of the form ∂µj
µ

= 0 for a Lagrangian invariant under an n-parameter “global” Lie group.2

Thus for a Lagrangian invariant under a one parameter global internal symmetry, we have a

single conserved current j
µ. The hermitian “charge” operator is defined as the spatial integral

of the time component of the current, Q =
∫

j
0
d
3
x. The Fabri-Picasso theorem (Fabri and

Picasso 1966) shows that the charge operator can be exponentiated to define a unitary operator,

U(ξ) = e
iξQ only if Q annihilates the vacuum. To prove the theorem, begin with the product of

the current and the charge operator in the vacuum state,

〈0|j0(x)Q|0〉 = 〈0|e−iP ·x
j0(0)e

iP ·x
Q|0〉, (B.1)

where the equality follows from translation invariance. But since the charge operator commutes

with P
µ, and P

µ annihilates the vacuum, we have further that

= 〈0|e−iP ·x
j0(0)Qe

iP ·x|0〉 = 〈0|j0(0)Q|0〉. (B.2)

1Here I am following Aitchison (1982); for a more careful discussion see Guralnik et al. (1968).
2Martin (2002), §6.2 points out that “global” in this sense should not be confused with global in the

context of spacetime theories. Roughly, so-called “global” gauge groups are finite dimensional Lie groups
(such that a specific element of the group can be specified by a finite number of parameters), whereas
“local” gauge groups are infinite dimensional Lie groups whose elements are specified via a finite number
of functions.
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Therefore the norm of Q in the vacuum state,

〈0|QQ|0〉 =

∫

d
3
x〈0|j0(x)Q|0〉 =

∫

d
3
x〈0|j0(0)Q|0〉 (B.3)

diverges unless Q|0〉 = 0. Since the norm of Q is infinite if it does not annihilate the vacuum, it

does not exist as a bounded operator acting on the Hilbert space.

B.2 Vacuum Energy

In QFT the vacuum state is defined as the lowest energy state of the assemblage of fields,

and here I will briefly review the calculation of vacuum energy for a scalar field. One approach

to quantizing the Klein-Gordon field is to treat each Fourier mode of the field as an independent

harmonic oscillator. To find the spectrum of the Hamiltonian, one introduces the creation and

annihilation operators (a† and a, respectively) and proceeds by analogy with the treatment of the

non-relativistic simple harmonic oscillator. In this case the commutation relation between a, a
†

is

[a
p
, a

†
p
′
] = (2π)

3
δ
(3)

(p − p
′
), (B.4)

where p,p
′ are three-space momentum vectors. Writing the Hamiltonian of the Klein-Gordon

field in terms of these operators yields:3

H =

∫
d
3
p

(2π)3
ω

p
(a

†
p
a
p

+
1

2
[a

p
, a

†
p
]) where ω

p
=

√

|p|2 + m2. (B.5)

3Starting with the usual expression for the Klein-Gordon Hamiltonian, namely H =
∫

d
3
x[ 12π

2
+

1
2 (∇φ)

2
+ 1

2m
2
φ

2
], eqn. (B.5) follows by rewriting φ, π in terms of a, a

†. See, e.g., Peskin and Schroeder
(1995), Chapter 2.
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The commutator term is analogous to the non-zero ground state energy of the non-relativistic

oscillator, but in this case it contributes an energy of
ωp

2 per mode in the sum over all modes.

The delta function can be handled by “box regularization” (i.e. imposing boundary conditions

on the field as if it were in a finite-volume box), but even so the second term is still divergent.

Imposing a finite frequency cut-off ωmax renders the integral convergent, and restoring the ~’s

and c’s, we have the following estimate for the vacuum energy density of a scalar field:4

〈ρvac〉 =
~

8π2c3 ω
4

max
. (B.6)

See, e.g., Miloni (1994); Rugh and Zinkernagel (2001) for more detailed discussions and deriva-

tions of these results. A similar calculation leads to the same result for the vacuum energy of

the free electromagnetic field in QED. The cut-off ωmax is usually interpreted as the upper limit

of the applicability of the theory; choosing roughly 100 GeV for QED, this yields an energy

density of 〈ρvac〉 ≈ 10
46

erg/cm
3.

One can ignore this incredible energy density almost as soon as one has calculated it:

S-matrix calculations are entirely unaffected by the presence of vacuum energy. The calculated

energy density has all the characteristics of an unrenormalized quantity: it is cut-off dependent,

and diverges in the limit as ωmax → ∞. As long as gravitational effects are neglected, the

vacuum energy can be “rescaled” by simply dropping the zero point contribution to the Hamilto-

nian. For some free field theories a general prescription known as normal ordering (a.k.a. Wick

ordering) can be used to accomplish this: simply move all of the a’s to the right of the a
†’s. In a

normal ordered product of fields there are no commutator terms (the second term in eqn.(B.5)),

4The notation 〈ρ〉 is shorthand for 〈0|ρ|0〉 where |0〉 is the vacuum state.
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so normal ordering eliminates the vacuum energy by getting rid of the zero point energy term.

Unfortunately normal ordering does not carry over to interacting field theories or gauge field

theories (one cannot simply rearrange the operators while respecting the gauge symmetry). To

my knowledge there is no more general formal prescription for eliminating zero point energy

in interacting gauge theories. The position of most physicists on this subject seems to be the

following: the formal consistency of field theory requires the introduction of the vacuum field

with zero point energy, and (as discussed in the text) various effects, such as the Casimir effect,

are observable consequences of the zero point energy.5

5Regarding the second point Miloni (1994) is much more careful than most physicists: unlike Wein-
berg (1989), who argues that the Casimir effect unambiguously establishes the reality of zero point energy,
Miloni acknowledges that the Casimir effect can be treated as a vacuum effect or in terms of source fields.
He calls the difference between the two approaches a “matter of taste,” and argues instead that a consistent
formulation of QFT requires the introduction of vacuum fields with zero point energies.
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Harré, R. (1986). Varieties of Realism. Basil Blackwell, Oxford.

Harrison, E. R. (1968). On the origin of galaxies. Monthly Notices of the Royal Astronomical
Society, 141:397–407.

Harrison, E. R. (1970). Fluctuations at the threshold of classical cosmology. Phys. Rev.,
D1:2726–2730.

Hartle, J. B. (1986). Initial conditions. In Kolb, E. W., Turner, M. S., Lindley, D., Olive, K.,
and Seckel, D., editors, Inner Space / Outer Space, pages 467–478, Chicago. University of
Chicago Press.

Hartle, J. B. and Hawking, S. W. (1983). Wave function of the universe. Physical Review,
D28:2960–2975.

Hawking, S. (1974). The anisotropy of the universe at large times. In Longair, M. S., editor,
Confrontation of cosmological theories with observational data, pages 317–334. D. Reidel,
Dordrecht.

Hawking, S. (1988). A Brief History of Time. Bantam Doubleday, New York.

Hawking, S. and Penrose, R. (1996). The nature of space and time. Isaac Newton Institute series
of lectures. Princeton University Press, Princeton.

Hawking, S. W. (1970). Conservation of matter in general relativity. Communications in Math-
ematical Physics, 18:301–306.

Hawking, S. W. (1982). The development of irregularities in a single bubble inflationary uni-
verse. Physics Letters B, 115:295–297.

Hawking, S. W. and Ellis, G. F. R. (1968). The cosmic black-body radiation and the existence
of singularities in our universe. Astrophysical Journal, 152:25–36.

Hawking, S. W. and Ellis, G. F. R. (1973). The Large Scale Structure of Space-Time. Cambridge
University Press, Cambridge.

Hawking, S. W., Gibbons, G. W., and Siklos, S. T. C., editors (1983). The very early universe.
Cambridge University Press, Cambridge.

Hawking, S. W. and Moss, I. G. (1982). Supercooled phase transitions in the very early universe.
Physics Letters B, 110:35–38.

Hawking, S. W. and Page, D. (1988). How probable is inflation? Nuclear Physics, B298:789–
809.

Hawking, S. W. and Tayler, R. (1966). Helium production in an anisotropic big-bang cosmology.
Nature, 209:1278–1282.

Hempel, C. G. (1988). Provisoes: A problem concerning the inferential function of scientific
theories. Erkenntnis, 28:147–164.



313

Henneaux, M. (1983). The Gibbs entropy production in general relativity. Nuovo Cimento
Lettere, 38:609–614.

Higgs, P. (1997). Spontaneous breaking of symmetry and gauge theories, chapter Panel Session:
Spontaneous Breaking of Symmetry. In Hoddeson et al. (1997).

Higgs, P. W. (1964). Broken symmetries, massless particles, and gauge fields. Physical Review
Letters, 12:132–133.

Hoddeson, L., Brown, L., Riordan, M., and Dresden, M., editors (1997). Rise of the Standard
Model: Particle physics in the 1960s and 1970s. Cambridge University Press, Cambridge.

Hoefer, C. (2000). Energy conservation in GTR. Studies in the History and Philosophy of
Modern Physics, 31:171–186.

Hollands, S. and Wald, R. (2002a). An alternative to inflation. gr-qc/0205058.

Hollands, S. and Wald, R. (2002b). Comment on inflation and alternative cosmology. hep-
th/0210001.

Howson, C. and Urbach, P. (1989). Scientific Reasoning: the Bayesian approach. Open Court,
La Salle, Illinois.

Hu, B. L. (1986). Notes on cosmological phase transitions. In Kolb, E. W., Turner, M., Schramm,
D., and Lindley, D., editors, Inner Space/Outer Space, pages 479–483, Chicago. University
of Chicago Press.

Hu, B. L., Ryan, M. P., and Vishveshwara, C. V. (1993). Directions in General Relativity,
volume 1. Cambridge University Press, Cambridge.

Isenberg, J. and Marsden, J. (1982). A slice theorem for the space of solutions of Einstein
equations. Physics Reports, 89:180–222.

Isham, C. and Butterfield, J. (2000). On the emergence of time in quantum gravity. In Butterfield,
J., editor, The Arguments of Time, pages 111–168. Oxford University Press, Oxford.

Janssen, M. (1997). Reconsidering a scientific revolution: the case of Einstein versus Lorentz.
Unpublished manuscript.

Janssen, M. (2002). COI stories: Explanation and evidence in the history of science. Perspectives
on Science, pages 457–522.

Jensen, L. G. and Stein-Schabes, J. A. (1987). Is inflation natural? Physical Review D, 35:1146–
1150.

Kaiser, D. (1998). A Ψ is just a Ψ? Pedagogy, practice and the reconstitution of general relativity,
1942-1975. Studies in the History and Philosophy of Modern Physics, 29:321–338.

Kazanas, D. (1980). Dynamics of the universe and spontaneous symmetry breaking. Astrophys-
ical Journal Letters, 241:L59–L63.



314

Kevles, D. J. (1977). The physicists: the history of a scientific community in modern America.
Knopf, New York.

Kibble, T. W. B. (1966). Symmetry breaking in non-Abelian gauge theories. Physical Review,
155(5):1554–1561.

Kibble, T. W. B. (1976). Topology of cosmic domains and strings. Journal of Physics, A9:1387–
97. Reprinted in Bernstein and Feinberg (1986).

Kibble, T. W. B. (1980). Some implications of a cosmological phase transition. Physics Reports,
67:183.

Kirzhnits, D. A. (1972). Weinberg model in the hot universe. JETP Letters, 15:529–531.

Kirzhnits, D. A. and Linde, A. (1972). Macroscopic consequences of the Weinberg model.
Physics Letters B, 42:471–474.

Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In Kitcher,
P. and Salmon, W., editors, Scientific Explanation, volume XIII of Minnesota Studies in the
Philosophy of Science, pages 410–505. University of Minnesota Press, Minneapolis.

Kitcher, P. (1993). The Advancement of Science. Oxford University Press, Oxford.

Klein, A. and Lee, B. W. (1964). Does spontaneous breakdown of symmetry imply zero-mass
particles? Physical Review Letters, 12:266–68.

Koertge, N. (1992). Explanation and its problems. British Journal for the Philosophy of Science,
43:85–98.

Kolb, E. W. (1994). Particle physics and cosmology. In Peach, K. J. and Vick, L. L. J., editors,
High Energy Phenomenology, pages 361–416. St. Andrews Press, Fife.

Kolb, E. W. and Turner, M. S. (1990). The early universe, volume 69 of Frontiers in Physics.
Addison-Wesley, New York.

Kolb, E. W. and Wolfram, S. (1980). Spontaneous symmetry breaking and the expansion rate of
the early universe. Astrophysical Journal, 239:428–432.

Kragh, H. (1996). Cosmology and Controversy. Princeton University Press, Princeton.

Kristian, J. and Sachs, R. (1966). Observations in cosmology. Astrophysical Journal, 143:379–
399.

Kubrin, D. (1967). Newton and the cyclical cosmos: Providence and the mechanical philosophy.
Journal of the History of Ideas, 28:325–46.

Kuhn, T. (1970). Structure of Scientific Revolutions. University of Chicago Press, Chicago, 2nd
edition.

Kuhn, T. (1977). The Essential Tension. University of Chicago Press, Chicago.

Kukla, A. (1995). Scientific realism and theoretical unification. Analysis, 55(4):230–238.



315

Lapchinksy, V. G., Nekrasov, V. I., Rubakov, V. A., and Veryaskin, A. V. (1984). Quantum field
theories with spontaneous symmetry breaking in external gravitational fields of cosmological
type. In Markov and West (1984), pages 213–230. Proceedings of the second Seminar on
Quantum Gravity; Moscow, October 13-15, 1981.

Laudan, L. and Leplin, J. (1991). Empirical equivalence and underdetermination. Journal of
Philosophy, 88:449–472.

Lemaı̂tre, G. (1934). Evolution of the expanding universe. Proceedings of the National Academy
of Science, 20:12–17.

Leplin, J. (1997). A novel defense of scientific realism. Oxford University Press, Oxford.

Leslie, J. (1989). Universes. Routledge, New York.

Lewontin, R. (1974). The Genetic Basis of Evolutionary Change. Columbia University Press,
New York.

Liddle, A. and Lyth, D. (2000). Cosmological Inflation and Large-Scale Structure. Cambridge
University Press, Cambridge.

Lifshitz, Y. M. (1946). On the gravitational stability of the expanding universe. Journal of
Physics USSR, 10:116–129.

Lightman, A. and Brawer, R. (1990). Origins: The Lives and Worlds of Modern Cosmologists.
Harvard University Press, Cambridge.

Lightman, A. and Press, W. (1989). Surfaces of constant redshift in an inflationary universe.
Astrophysical Journal, 337:598–600.

Linde, A. (1974). Is the Lee constant a cosmological constant? Soviet Physics JETP, 19(5):183–
184.

Linde, A. (1979). Phase transitions in gauge theories and cosmology. Reports on Progress in
Physics, 42:389–437.

Linde, A. (1982). A new inflationary universe scenario: a possible solution of the horizon, flat-
ness, homogeneity, isotropy, and primordial monopole problems. Physics Letters B, 108:389–
393.

Linde, A. (1990). Particle physics and inflationary cosmology. Harwood Academic Publishers,
Amsterdam.

Linde, A. (2002). Interview with Andrei Linde conducted by Chris Smeenk. 89 pp. manuscript,
to be deposited in the Oral History Archives at the American Institute of Physics.

Lindley, D. (1985). The inflationary universe: A brief history. Unpublished manuscript.

Lorentz, H. A., Einstein, A., Minkowski, H., and Weyl, H. (1952). The Principle of Relativity.
Dover. First published by Methuen and Company in 1923. Translations by W. Perrett and
G.B. Jeffrey.



316

Lukash, V. N. (1980). Production of phonons in an isotropic universe. Soviet Physics JETP,
52:807–814.

Lyth, D. and Riotto, A. (1999). Particle physics models of inflation and the cosmological density
perturbation. Physics Reports, 314:1–146.

MacCallum, M. A. H. (1971). Problems of the mixmaster universe. Nature, 230:112–115.

MacCallum, M. A. H. (1979). Anisotropic and inhomogeneous relativisitic cosmologies. In
Hawking, S. and Israel, W., editors, General Relativity: An Einstein centenary survey, pages
533–580. Cambridge University Press, Cambridge.

Madsen, M. S., Ellis, G. F. R., Mimoso, J. P., and Butcher, J. A. (1992). Evolution of the density
parameter in inflationary cosmology reexamined. Physical Review D, 46:1399–1415.

Malament, D. (1977). Obervationally indistinguishable space-times. In Earman, J., Glymour,
C., and Statchel, J., editors, Foundations of Space-Time Theories, volume VIII of Minnesota
Studies in the Philosophy of Science, pages 61–80. University of Minnesota Press.

Mannheim, P. D. (2000). Attractive and repulsive gravity. Foundations of Physics, 30:709–746.

Markov, M. A. and West, P. C., editors (1984). Quantum Gravity, New York. Plenum Press.
Proceedings of the second Seminar on Quantum Gravity; Moscow, October 13-15, 1981.

Martin, C. (2002). Gauging Gauge: Remarks on the Conceptual Foundations of Gauge Symme-
try. PhD thesis, University of Pittsburgh.

Martin, J. and Brandenberger, R. H. (2001). The trans-Planckian problem of inflationary cos-
mology. Physical Review D, 63:123501.

Matravers, D. R., Ellis, G. F. R., and Stoeger, W. R. (1995). Complementary approaches to
cosmology: Relating theory and observations. Quarterly Journal of the Royal Astronomical
Society, 36:29–45.

Maudlin, T. (1996). On the unification of physics. Journal of Philosophy, 93(3):129–44.

Mayo, D. G. (1996). Error and the growth of experimental knowledge. University of Chicago
Press, Chicago.

McMullin, E. (1993). Indifference principle and anthropic principle in cosmology. Studies in
the History and Philosophy of Science, 24(3):359–389.

McVittie, G. C. (1956). General Relativity and Cosmology. University of Illinois Press, first
edition.

McVittie, G. C. (1965). General Relativity and Cosmology. University of Illinois Press, second
edition.

Miloni, P. W. (1994). Quantum vacuum: an introduction to quantum electrodynamics. Academic
Press, New York.



317

Misner, C. (2001). Interview with Charles Misner conducted by Chris Smeenk. 34 pp.
manuscript, to be deposited in the Oral History Archives at the American Institute of Physics.

Misner, C. W. (1963). The flatter regions of Newman, Unti, and Tamburino’s generalized
Schwarzschild space. Journal of Mathematical Physics, 4:924–937.

Misner, C. W. (1967). Transport processes in the primordial fireball. Nature, 214:40–41.

Misner, C. W. (1968). The isotropy of the universe. Astrophysical Journal, 151:431–457.

Misner, C. W. (1969a). Absolute zero of time. Physical Review, 186:1328–1333.

Misner, C. W. (1969b). Mixmaster universe. Physical Review Letters, 22:1071–1074.

Misner, C. W. (1969c). Quantum cosmology. I. Physical Review, 186:1319–1327.

Misner, C. W. (1994). The mixmaster cosmological metrics. In Hobil, Burd, and Coley, editors,
Deterministic Chaos in General Relativity, pages 317–328, New York. Plenum Press.

Misner, C. W. and Matzner, R. (1972). Dissipative effects in the expansion of the universe. I.
Astrophysical Journal, 171:415–432.

Misner, C. W., Thorne, K., and Wheeler, J. A. (1973). Gravitation. W. H. Freeman & Co., New
York.

Mohapatra, R. N. (1980). Cosmological constant, grand unification and symmetry behavior in
early universe. Physical Review D, 22:2380–2383.

Mohapatra, R. N. and Senjanovic, G. (1979a). Broken symmetries at high temperature. Phys.
Rev., D20:3390–3398.

Mohapatra, R. N. and Senjanovic, G. (1979b). Soft CP violation at high temperature. Physical
Review Letters, 42:1651–1654.

Morrison, M. (2000). Unifying Scientific Theories: Physical Concepts and Mathematical Struc-
tures. Cambridge University Press, Cambridge.

Mukhanov, V. F. and Chibisov, G. V. (1981). Quantum fluctuations and a nonsingular universe.
JETP Letters, 33:532–535.

Mukhanov, V. F., Feldman, H. A., and Brandenberger, R. H. (1992). Theory of cosmological
perturbations. part 1. classical perturbations. part 2. quantum theory of perturbations. part 3.
extensions. Physics Reports, 215:203–333.

Munitz, M. K. (1962). The logic of cosmology. British Journal for the Philosophy of Science,
13:34–50.

Musgrave, A. (1974). Logical versus historical theories of confirmation. British Journal for the
Philosophy of Science, 25:1–23.

Nambu, Y. (1961). Quasi-particles and gauge invariance in the theory of superconductivity.
Physical Review, 117(3):648–663.



318

Nambu, Y. and Jona-Lasinio, G. (1961a). A dynamical model of elementary particles based on
analogy with superconductivity. I. Physical Review, 122:345–358.

Nambu, Y. and Jona-Lasinio, G. (1961b). A dynamical model of elementary particles based on
analogy with superconductivity. II. Physical Review, 124:246–254.

Nanopoulos, D. V., Olive, K. A., and Srednicki, M. (1983). After primordial inflation. Physics
Letters B, 127:30–34.

Newton, I. (1999). The Principia: Mathematical Principles of Natural Philosophy. University
of California Press, Berkeley, California. Assisted by Julia Budenz. Includes Cohen’s Guide
to Newton’s Principia.

North, J. D. (1965). The Measure of the Universe. Oxford University Press, Oxford.

Norton, J. (1984). How Einstein found his field equations, 1912-1915. Historical Studies in the
Physical Sciences, 14:253–316. Reprinted in Howard and Stachel 1989.

Norton, J. (1985). What was Einstein’s principle of equivalence? Studies in the History and
Philosophy of Science, 16:203–246. Reprinted in Howard and Stachel 1989.

Norton, J. (1993). General covariance and the foundations of general relativity: Eight decades
of dispute. Reports on Progress in Physics, 56:791–858.

Norton, J. (1994). Science and certainty. Synthese, 99:3–22.

Norton, J. (1999). The cosmological woes of Newtonian gravitation theory. volume 7 of Einstein
Studies, pages 271–323, Boston. Birkhäuser.
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