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Inflation, Dark Matter and Dark
Energy
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11.1 Introduction

The story of how we arrived at the present picture of the structure and evolution of the Uni-
verse has concentrated largely upon observation, interpretation and the judicious application
of theory through Chaps. 6 to 10. The developments in astrophysical and geometrical cos-
mology represent quite extraordinary progress in understanding the origins and evolution of
our Universe and its contents. The contrast between the apparently insuperable problems of
determining precise values of cosmological parameters up till the 1990s and the present era of
precision cosmology in the first decades of the 21st century is startling. But these achievements
also resulted in a significant change of perspective in that they involved the introduction of
new aspects of physics into cosmology, largely as a result of the increased confidence in favour
of the now-standard ⇤CDM model. These in turn led to a better understanding of the energy
budget of the Universe and a much clearer understanding of the early Universe.

We now need to pull all these strands together to address the major issues of cosmology as
a science and pave the way for the considerations of Chaps. 12 and 13 which review potential
future directions for contemporary cosmology.1 The steps towards the realisation that dark
matter and dark energy are essential components of the physical content of our universe will
be briefly reviewed (Sect. 2). Then, the major physical problems which have to be addressed
by observers and theorists are discussed (Sect. 3). In Sect. 4, a brief pedagogical interlude
will help bring some of the issues into clearer focus. This leads to a critical discussion of
the inflationary paradigm for the very early history of our Universe in Sect. 5 and subsequent
sections.

11.2 Dark Matter and Dark Energy

11.2.1 Dark Matter

In the early days of astrophysical cosmology, there were many reasons why there should be
dark matter in the Universe made out of familiar baryonic material – low mass stars, dead
stars, interstellar and intergalactic gas, dust and so on. If the matter did not radiate in the
optical waveband, it was invisible. The subsequent story breaks naturally into two parts – first
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establishing the amount of dark matter present in the Universe and then determining whether
or not it is baryonic. This endeavour was to require the full power of the information-gathering
capacities of the new post-War astronomies, the advent of new technologies and associated
astronomical facilities, and advances in interpretation and theory (Sect. 7.3). Among key
astrophysical steps along the way were the following.

• Oort’s pioneering determination of the mass density in the plane of the Galaxy from the
velocity dispersion of stars perpendicular to the plane of the Galaxy (0.092 M� pc�3)
showed that gravitationally there was more mass present than the sum of the masses of
all types of star in our vicinity (0.038 M� pc�3) (Oort, 1932).

• Zwicky’s remarkable pioneering demonstration of the enormous mass-to-light ratios of
clusters of galaxies, as determined by application of the virial theorem to the velocity
dispersion of galaxies in the Coma cluster, brought vividly to light just how much dark
matter there had to be in these systems (Zwicky, 1933, 1937).2

• Once powerful long-slit optical spectroscopic facilities became available, the rotation
curves of galaxies could be traced well beyond their central regions and flat rotation
curves were observed by Vera Rubin and her colleagues (Rubin et al., 1980) (Fig. 11.1).
At the same time, studies of spiral galaxies using the 21-cm line of neutral hydrogen
determined the rotation curves to much greater distances from their centres than optical
observations and showed that flat rotation curves are the norm, rather than the exception
(Bosma, 1981).3

• Theoretical studies of the stability of the mass distributions in disk galaxies by Miller,
Prendergrast and Hohl found that these were unstable. Ostriker and Peebles (1973) showed
that the presence of dark matter haloes could stabilize disc galaxies.

• X-ray imaging of clusters of galaxies enabled the total mass distribution within the cluster
gravitational potential to be determined and there was found to be much more mass
present than could be attributed to galaxies, based on their average mass-to-luminosity
ratios (Fabricant et al., 1980; Böhringer, 1994).

• The low mass-to-luminosity ratios for the visible parts of galaxies were consistent with
the low baryonic mass density inferred from primordial nucleosynthesis (Sect. 6.7 and
10.7). While the parameters could be stretched to explain the dark matter in clusters by
baryonic matter, it was at the verges of plausibility by the 1980s.

• Finally, the low limits to the fluctuations in the cosmic microwave background radiation
forced cosmologists to take non-baryonic dark matter really seriously in the early 1980s
in order to account for the formation of structure in the Universe by the present epoch,
while depressing the predicted level of fluctuations in the Cosmic Microwave Background
Radiation below the observational upper limits (Sect. 6.13).

Thus, from the early-1980s onwards, non-baryonic dark matter had to be taken seriously.
From the point of view of the origin of cosmic structure, models were developed to study
the astrophysical implications of di�erent forms of dark matter candidates, for example, hot
versus cold dark matter, top-down versus bottom-up approaches to structure formation and so
on (Sect. 10.10). The observational and experimental challenges now shifted to developing
more detailed models to understand the nature of the dark matter, either in terms of specific
classes of astrophysical objects, or by following up clues from particle physics.
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Fig. 11.1 The rotation curve for the nearby giant spiral galaxy M31, showing the flat rotation curve
extending well beyond the optical image of the galaxy thanks to observations of the velocities of interstellar
neutral hydrogen by Morton Roberts and his colleagues (Courtesy of the late Dr. Vera Rubin).

11.2.2 Constraining dark matter candidates

Baryonic Dark Matter. By baryonic matter, we mean ordinary matter composed of protons,
neutrons and electrons and for convenience we include the black holes in this discussion. Certain
forms of baryonic matter are very di�cult to detect because they are very weak emitters of
electromagnetic radiation. Important examples include stars with masses M  0.08M�, in
which the central temperatures are not hot enough to burn hydrogen into helium – they are
known collectively as brown dwarfs. They have no internal energy source and so the source
of their luminosity is the thermal energy with which they were endowed at birth. There could
be a small contribution from deuterium burning, but even this is not possible for stars with
masses M  0.01M�. Brown dwarfs are normally classified as inert stars with masses in the
range 0.08 � M � 0.01M�. Below that mass, they are normally referred to as planets, 0.01M�
corresponding to ten times the mass of Jupiter.

Until relatively recently, brown dwarfs were very di�cult to detect. The situation changed
dramatically with a number technical advances in optical and infrared astronomy. The 2MASS
infrared sky survey, conducted at a wavelength of 2 µm, discovered many cool brown dwarfs.
The NICMOS infrared camera on the Hubble Space Telescope (HST) discovered numerous
brown dwarfs in nearby star clusters. The same techniques of high precision optical spec-
troscopy, which has been spectacularly successful in discovering extrasolar system planets,
was also used to discover a number of brown dwarfs orbiting normal stars. Although the brown
dwarfs are estimated to be about twice as common as stars with masses M � 0.08M�, they
contribute very little to the mass density in baryonic matter as compared with normal stars
because of their low masses. The consensus of opinion is that brown dwarfs could only make
a very small contribution to the dark matter problem.

Black holes are potential candidates for the dark matter. The supermassive black holes
in the nuclei of galaxies have masses which are typically only about 0.1% of the mass of
the bulges of their host galaxies and so they contribute negligibly to the mass density of the
Universe. There might, however, be an intergalactic population of massive black holes. Limits
to their number density can be set in certain mass ranges from studies of the numbers of
gravitationally-lensed galaxies observed in large samples of extragalactic radio sources. In
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their VLA survey of a very large sample of extragalactic radio sources, designed specifically to
search for gravitationally lensed structures, Hewitt and her colleagues set limits to the number
density of massive black holes with masses in the range 1010  M  1012M�. They found
that the numbers found corresponded to ⌦BH ⌧ 1 (Hewitt et al., 1987). The same technique
using very long baseline interferometry (VLBI) can be used to study the mass density of
lower mass black holes by searching for the gravitationally lensed images on an angular scale
of a milliarcsecond, corresponding to masses in the range 106  M  108M� (Kassiola
et al., 1991). Wilkinson and his colleagues searched a sample of 300 compact radio sources
for examples of multiple gravitationally lensed images but none were found. The upper limit
to the cosmological mass density of intergalactic supermassive compact objects in the mass
range 106  M  108M� corresponded to less than 1% of the critical cosmological density
(Wilkinson et al., 2001).

Another possibility raised by Peter Mészáros (1975) was that the dark matter might consist
of black holes of mass roughly 1 M�. It cannot be excluded that the dark matter might consist
of a very large population of very low mass black holes, but these would have to be produced
by a rather special initial perturbation spectrum in the very early Universe before the epoch
of nucleosynthesis. The fact that black holes of mass less than about 1012 kg evaporate by
Hawking radiation on a cosmological timescale sets a firm lower limit to the possible masses
of mini-black holes which could contribute to the dark matter at the present epoch (Hawking,
1975).

An impressive approach to setting limits to the contribution which discrete low mass
objects, collectively known as MAssive Compact Halo Objects, or MACHOs, could make to
the dark matter in the halo of our own Galaxy, has been the search for gravitational microlensing
signatures of such objects as they pass in front of background stars. The MACHOs include
low mass stars, white dwarfs, brown dwarfs, planets and black holes. These events are very
rare and so very large numbers of background stars have to be monitored. The beauty of this
technique is that it is sensitive to MACHOs with a very wide range of masses, from 10�7 to
100 M�, and so the contributions of a very wide range of candidates for the dark matter can
be constrained. In addition, the expected light curve of such gravitational lensing events has
a characteristic form which is independent of wavelength. The time scale for the brightening
is roughly the time it takes the MACHO to cross the Einstein radius of the dark deflector.
Two large projects, the MACHO and the EROS projects, have made systematic surveys over a
number of years to search for these events. The MACHO project, which ran from 1992 to 1999
used stars in the Magellanic Clouds and in the Galactic bulge as background stars and millions
stars were monitored regularly (Alcock et al., 1993b). The first example of a microlensing
event was discovered in October 1993 (Fig. 11.2), the mass of the invisible lensing object
being estimated to lie in the range 0.03 < M < 0.5 M� (Alcock et al., 1993a).

By the end of the MACHO project, many lensing events had been observed, including
over 100 in the direction towards the Galactic bulge, about three times more than expected.
In addition, 13 definite and 4 possible events were observed in the direction of the Large
Magellanic Cloud (Alcock et al., 2000). The numbers are significantly greater than the 2–4
detections expected from known types of star. The technique does not provide distances and
masses for individual objects, but, interpreted as a Galactic halo population, the best statistical
estimates suggest that the mean mass of these MACHOs is between 0.15 � 0.9 M�. The
statistics are consistent with MACHOs making up about 20% of the necessary halo mass, the



Dark Matter and Dark Energy 375

Fig. 11.2 The gravitational microlensing event recorded by the MACHO project in February and March
1993. The horizontal axis shows the date in days measured from day zero on 2 January 1992. The vertical
axis shows the amplification of the brightness of the lensed star relative to the unlensed intensity in
blue and red wavebands. The solid lines show the expected variations of brightness of a lensed star with
time. The same characteristic light curve is observed in both wavebands, as expected for a gravitational
microlensing event (Alcock et al., 1993b).

95% confidence limits being 8 – 50%. Somewhat fewer microlensing events were detected in
the EROS project which found that less that 25% of the mass of the standard dark matter halo
could consist of dark objects with masses in the range 2⇥ 10�7 to 1 M� at the 95% confidence
level (Afonso et al., 2003). The most likely candidates for the detected MACHOs would appear
to be white dwarfs, which would have to be produced in large numbers in the early evolution
of the Galaxy, but other more exotic possibilities cannot be excluded. The consensus view is
that MACHOs alone cannot account for all the dark matter in the halo of our Galaxy and so
some form of non-baryonic matter must make up the di�erence.

As discussed in Sects. 6.7 and 10.7, a strong limit to the total amount of baryonic matter
in the Universe is provided by considerations of primordial nucleosynthesis. A consequence
of that success story is that the primordial abundances of the light elements, particularly of
deuterium and helium-3, are sensitive tracers of the mean baryon density of the Universe.
Steigman found a best estimate of the mean baryon density of the Universe of ⌦Bh2 =
(0.0223 ± 0.002) (Steigman, 2006). Adopting h = 0.7, the density parameter in baryonic
matter is ⌦B = 0.0455, compared with a mean density of matter in the Universe of ⌦0 ⇡ 0.25
(see Sect. 10.7). Thus, ordinary baryonic matter is only about one tenth of the total mass
density of the Universe, most of which must therefore be in some non-baryonic form.
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11.2.3 Non-baryonic Dark Matter

The dark matter may consist of the types of particle predicted by theories of elementary
particles but not yet been detected experimentally. Three of the most popular possibilities are
described briefly in the following paragraphs.

Axions. The smallest mass candidates are the axions which were invented by particle theorists
in order to ‘save quantum chromodynamics from strong CP violation’. If these particles exist,
they would have important astrophysical consequences (Kolb and Turner, 1990). If the axions
were produced in thermal equilibrium, they would have unacceptably large masses, which
would result in conflict with observations of the Sun and the supernova SN1987A. Specifically,
if the mass of the axion were greater than 1 eV, the rate of loss of energy by the emission
of axions would exceed the rate at which energy is generated by nuclear reactions in the Sun
and so its centre would need to be hotter, resulting in a shorter age than is acceptable and
greater emission of high energy neutrinos. There is, however, another non-equilibrium route
by which the axions could be created in the early Universe. If they exist, they must have
been created when the thermal temperature of the Universe was about 1012 K but they were
out of equilibrium and never acquired thermal velocities – they remained ‘cold’. Their rest
mass energies are expected to lie in the range 10�2 to 10�5 eV. The role of such particles in
cosmology and galaxy formation are discussed by Efstathiou and Kolb and Turner (Efstathiou,
1990; Kolb and Turner, 1990).

Neutrinos with finite rest mass. A second possibility is that the three known types of neutrino
have finite rest masses. Laboratory tritium �-decay experiments have provided an upper limit to
the rest mass of the electron antineutrino of m⌫  2 eV (Weinheimer, 2001). This measurement
does not exclude the possibility that the two other types of neutrino, the µ and ⌧ neutrinos,
could have greater masses. However, the discovery of neutrino oscillations has provided a
measurement of the mass di�erence between the µ and ⌧ neutrinos of �m2

⌫ ⇠ 3⇥10�3 (Eguchi
et al., 2003; Aliu et al., 2005). Thus, although their masses are not measured directly, they
probably have masses of the order of 0.1 eV. This can be compared with the typical neutrino
rest mass needed to attain the critical cosmological densitty of about 10–20 eV.4

WIMPs. A third possibility is that the dark matter is in some form of Weakly Interacting
Massive Particle, or WIMP. This might be the gravitino, the supersymmetric partner of the
graviton, or the photino, the supersymmetric partner of the photon, or some form of as yet
unknown massive neutrino-like particle. In particular, the dark matter might be in the form of
the lightest supersymmetric particle which is expected to be stable.

There must, however, be a suppression mechanism to avoid the problem that, if the WIMPs
were as common as the photons and neutrinos, the masses cannot be greater than about 30 eV.
The physics of this process is described by Kolb and Turner (1990).5. According to particle
theorists, almost all theories of physics beyond the standard model involve the existence of
new particles at the TeV scale because of the symmetries which have to be introduced to
avoid proton decay and violations of the precision tests of the electro-weak theory. These
considerations lead to the expectation of new particles at the weak energy scale.

An example of the type of experiment which could demonstrate the presence of new
particles has been carried out at the LHCb and CMS experiments at CERN. The cross-section
of the extremely rare decay of the Bs meson into two muons has been measured. The observed
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branching fraction for this process compared with the predictions of the standard model
provides a means of searching for physics beyond the standard model. The measurements were
statistically compatible with standard model predictions and so allow stringent constraints to
be placed on theories beyond the standard model. This experiment, involving the simplest of
the routes to the detection of supersymmetric particles, gave a null result but this does not rule
out the importance of this type of search for supersymmetric particles since there are other
ways in which they could be involved in particle decays (CMS and LHCb Collaborations et al.,
2015).

11.2.4 Astrophysical and Experimental Limits

Useful astrophysical limits can be set to the number densities of di�erent types of neutrino-like
particles in the outer regions of giant galaxies and in clusters of galaxies. The WIMPs and
massive neutrinos are collisionless fermions and therefore there are constraints on the phase
space density of these particles, which translate into a lower limit to their masses (Tremaine
and Gunn, 1979).

Being fermions, neutrino-like particles are subject to the Pauli Exclusion Principle ac-
cording to which there is a maximum number of particle states in phase space for a given
momentum pmax. It is a straightforwad calculation to show that the resulting lower bound to
the mass of the neutrino is:

m⌫ � 1.5
(N⌫�3R2

Mpc)1/4
eV , (11.1)

where the velocity dispersion �3 is measured in units of 103 km s�1 and R is measured in Mpc.
In clusters of galaxies, typical values are � = 1000 km s�1 and R = 1 Mpc. If there is only

one neutrino species, N⌫ = 1, we find m⌫ � 1.5 eV. If there were six neutrino species, namely,
electron, muon, tau neutrinos and their antiparticles, N⌫ = 6 and then m⌫ � 0.9 eV. For giant
galaxies, for which � = 300 km s�1 and R = 10 kpc, m⌫ � 20 eV if N⌫ = 1 and m⌫ � 13 eV
if N⌫ = 6. For small galaxies, for which � = 100 km s�1 and R = 1 kpc, the corresponding
figures are m⌫ � 80 eV and m⌫ � 50 eV respectively. Thus, particles with rest masses m⌫ ⇠ 1
eV could bind clusters of galaxies but they could not bind the haloes of giant or small galaxies.

The search for evidence for di�erent types of dark matter particles has developed into one
of the major areas of astroparticle physics. An important class of experiments involves the
search for weakly interacting particles with masses m � 1 GeV, which could make up the dark
halo of our Galaxy. In order to form a bound dark halo about our Galaxy, the particles would
have to have velocity dispersion hv2i1/2 ⇠ 230 km s�1 and their total mass is known. Therefore,
the number of WIMPs passing through a terrestrial laboratory each day is a straightforward
calculation. When these massive particles interact with the sensitive volume of the detector,
the collision results in the transfer of momentum to the nuclei of the atoms of the material of
the detector and this recoil can be measured in various ways. The challenge is to detect the very
small number of events expected because of the very small cross-section for the interaction of
WIMPs with the nuclei of atoms. A typical estimate is that less than one WIMP per day would
be detectable by 1 kilogram of detector material. There should be an annual modulation of the
dark matter signal as a result of the Earth’s motion through the Galactic halo population of
dark matter particles.

A good example of the quality of the data now available is provided by the results of
the Super Cryogenic Dark Matter Search (SuperCDMS) at the Soudan Laboratory. With an
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exposure of 1690 kg days, only a single candidate event was observed, consistent with the
expected background in the detector. The upper limit to the spin-independent WIMP-nucleon
cross section is (1.4±1.0)⇥ 1044 cm2 at 46 GeV c�2. These results are the strongest limits to date
for WIMP-germanium-nucleus interactions for masses greater than 12 GeV c�2 (SuperCDMS
Collaboration et al., 2017).

Alternatives to dark matter have been proposed, including modifying Newtonian dynamics
(MOND models). But the constraints and the undoubted successes of the standard picture
based on standard general relativity sets a very high bar for alternatives to dark matter and will
not be discussed further here.

11.2.5 The Dark Energy

The compelling evidence for the finite value of the cosmological constant ⇤ has been reviewed
in Sects. 8.6.2 and 10.4 to 10.8. The evidence for an accelerating universe from the redshift-
magnitude relation for Type 1A supernovae and, even more compellingly in the view of this
author, from the many di�erent aspects of analysing the properties of the power spectrum of
the fluctuations in the Cosmic Microwave Background Radiation, is unambiguous. It is partic-
ularly impressive that, using the scalar power spectrum of the fluctuations, their polarisation
power spectra and the large-scale power spectrum of the dark matter derived from the Planck
observations, the six parameter family of the best-fit model can be derived without recourse
to any other observations.6 The independence of this result from all the other estimates is
striking.

But there is more to it than that. The ⇤CDM model solves the problem of creating the
large-scale structure of the distribution of dark matter in a simple and elegant manner without
the need to patch it up essentially arbitrarily with astrophysical phenomena, which is necessary
in the other viable models.7

If dark matter is a hard problem, the dark energy is very, very hard. The contrast between
the dark matter and the dark energy is striking. The estimates of the amount of dark matter
depend on Newtonian gravity in domains in which we can have a great deal of confidence
that it is the appropriate limit of general relativity. The dark matter is acted upon by gravity
in the usual way, whereas the dark energy term in Einstein’s equations does not depend upon
the mass distribution, as can be seen from the expression for the variation of the scale factor a
with cosmic time.

‹a = �4⇡G
3

a
✓
% +

3p
c2

◆
+ 1

3⇤a . (11.2)

The ⇤ term provides a uniform background against which the evolution of the contents of the
Universe unfold. It only makes its presence known on the largest scales a observable at the
present epoch and becomes of decreasing importance at large redshifts.

There is also the issue of on which side of (11.2) the cosmological constant term should
appear. The Einstein field equations are written by Matteo Realdi in his equation (3.3) above
as follows:

Gµ⌫ � 1
2 gµ⌫ G � ⇤gµ⌫ = �Tµ⌫ . (11.3)

The left-hand side of this equation describes the geometry of space-time as described by Gµ⌫

while the stress-energy tensor Tµ⌫ appears on the right-hand side. Is the ⇤-term part of the
intrinsic geometry of the universe, in which case it should appear on the left-hand side, or is it
a source term for the gravitational field in which case it should appear on the right-hand side
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of (11.3). These are hard questions to answer observationally, but some aspects of them are
feasible. For example, if the dark energy term were to change with cosmic epoch, that would
imply that it is a physical field. Experiments such as the Euclid experiment of the European
Space Agency and the WFIRST mission of NASA aim to tackle that very issue.

11.3 The Big Problems

The concordance model discussed in Sects. 8.6.2 and 10.4 is undoubtedly a remarkable triumph
but, like all good theories, it raises as many problems as it solves. The picture is incomplete in
the sense that, within the context of the standard Friedman world models, the initial conditions
have to be put in by hand in order to create the Universe as we observe it today. How did these
initial conditions arise? Let us review these basic problems.

11.3.1 The horizon problem

The horizon problem, clearly recognised by Dicke (1961) is the question ‘Why is the Universe
so isotropic?’ At earlier cosmological epochs, the particle horizon r ⇠ ct encompassed less and
less mass and so the scale over which particles could be causally connected was smaller and
smaller. We can illustrate this by working out how far light could have travelled along the last
scattering surface at z ⇠ 1000 since the Big Bang. In matter-dominated models, this distance
is r = 3ct, corresponding to an angle ✓H ⇡ 2� on the sky. Thus, regions of the sky separated
by greater angular distances could not have been in causal communication. Why then is the
Cosmic Microwave Background Radiation so isotropic? How did causally separated regions
‘know’ that they had to have the same temperature to better than one part in 105?

11.3.2 The flatness problem

Why is the Universe geometrically flat, ⌦ = 1? The flatness problem was also recognised by
Dicke in 1961 and reiterated by Dicke and Peebles in 1979 for standard world models with
⌦⇤ = 0 (Dicke, 1961; Dicke and Peebles, 1979). In its original version, the problem arises
from the fact that, according to the standard world models, if the Universe were set up with a
value of the density parameter di�ering even slightly from the critical value ⌦ = 1, it would
diverge very rapidly from this value at later epochs. If the Universe has density parameter ⌦0
today, at redshift z, ⌦(z) would have been given by


1 � 1

⌦(z)

�
= f (z)


1 � 1

⌦0

�
, (11.4)

where f (z) = (1 + z)�1 for the matter-dominated era and f (z) / (1 + z)�2 during the radiation
dominated era. Thus, since ⌦0 ⇠ 1 at the present epoch, it must have been extremely close to
the critical value in the remote past. Alternatively, if ⌦(z) had departed from ⌦(z) = 1 at a
very large redshift, ⌦0 would be very far from ⌦0 = 1 today. Thus, the only ‘stable’ value of
⌦0 is ⌦0 = 1. There is nothing in the standard world models that would lead us to prefer any
particular value of ⌦0. This is sometimes referred to as the fine-tuning problem.8

When Dicke described the horizon problem, the value of the overall density parameter
was poorly known, but his argument was still compelling. Now we know that the value of the
overall density parameter is ⌦ = ⌦D+⌦B+⌦⇤ = 1.00±0.01 (Planck Collaboration, 2016b)
– there is no hiding place.
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11.3.3 The baryon-asymmetry problem

The baryon-asymmetry problem arises from the fact that the photon-to-baryon ratio today is

N�

NB
=

4 ⇥ 107

⌦Bh2 = 1.6 ⇥ 109, (11.5)

where ⌦B is the density parameter in baryons and the values of ⌦B and h have been taken
from Table 10.6.2. If photons are neither created nor destroyed, this ratio is conserved as
the Universe expands. At temperature T ⇡ 1010 K, electron-positron pair production takes
place from the photon field. At a correspondingly higher temperature, baryon-antibaryon pair
production takes place with the result that there must have been a very small asymmetry in the
baryon-antibaryon ratio in the very early Universe if we are to end up with the correct photon-
to-baryon ratio at the present day. At these very early epochs, there must have been roughly
109+1 baryons for every 109 antibaryons to guarantee the observed ratio at the present epoch. If
the Universe had been symmetric with respect to matter and antimatter, the photon-to-baryon
ratio would now be about 1018, in gross contradiction with the observed value (Zeldovich,
1965). Therefore, there must be some mechanism in the early Universe which results in a slight
asymmetry between matter and antimatter. Fortunately, we know that spontaneous symmetry
breaking results in a slight imbalance between various classes of mesons and so there is hope
that this can be explained by ‘standard’ particle physics, but the precise mechanism has not
been identified.

11.3.4 The Primordial Fluctuation Problem

What was the origin of the density fluctuations from which galaxies and large-scale structures
formed? According to the analyses of Sect. 6.10.1, the amplitudes of the density perturbations
when they came through the horizon had to be of finite amplitude, �%/% ⇠ 10�4, on a very
wide range of mass scales. Such density perturbations could not have originated as statistical
fluctuations in the numbers of particles on, say, the scales of superclusters of galaxies. As
discussed in the above Section, this problem led pioneers such as Lemaître, Tolman and
Lifshitz to conclude that galaxies could not have formed by gravitational collapse. Others, such
as Zeldovich, Peebles and their colleagues, pressed ahead and assumed that such fluctuations
had their origin in the very early universe and followed up the consequences of that assumption.
There must have been some physical mechanism which generated finite amplitude perturbations
with power-spectrum close to P(k) / k in the early Universe.

11.3.5 The Values of the Cosmological Parameters

The horizon and flatness problems, were recognised before compelling evidence was found
for the finite value of the cosmological constant. The concordance values for the cosmological
parameters create their own problems. The density parameters in the dark matter and the dark
energy are of the same order of magnitude at the present epoch but the matter density evolves
with redshift as (1+ z)3, while the dark energy density is unchanging with cosmic epoch. Why
then do we live at an epoch when they have more or less the same values?

The tortuous history of the cosmological constant was recounted in Sects. 6.8.5 and 10.4.
A key insight resulted from the introduction of Higgs fields into the theory of weak interactions
(Higgs, 1964). The Higgs fields are scalar fields, which have negative pressure equations of
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state, p = �%c2.9 The theoretical value of %⇤ can be estimated from quantum field theory
and is found to be %v = 1095 kg m�3, about 10120 times greater than the value of %⇤ at the
present epoch, which corresponds to %⇤ ⇡ 10�27 kg m�3 (Carroll et al., 1992).10 This is usually
regarded as quite a problem.

As if these problems were not serious enough, they are compounded by the fact that the
nature of the dark matter and the dark energy are unknown. Thus, one of the consequences of
precision cosmology is the remarkable result that we do not understand the nature of about
95% of the material which drives the large scale dynamics of the Universe. The concordance
values for the cosmological parameters listed in Sect. 10.6.2 really are extraordinary – many
of our colleagues regard them as crazy. Rather than being causes for despair, however, these
problems should be seen as the great challenges for the astrophysicists and cosmologists of
the 21st century. It is not too far-fetched to see an analogy with Bohr’s theory of the hydrogen
atom, which was an uncomfortable mix of classical and primitive quantum ideas, but which
was ultimately to lead to completely new and deep insights with the development of quantum
mechanics (Longair, 2013).

11.3.6 The Way Ahead

In the standard Friedman models, the problems are solved by assuming that the Universe was
endowed with appropriate initial conditions in its very early phases. To put it crudely, we get
out at the end what we put in at the beginning. In a truly physical picture of our Universe, we
should do better than this.

There are five possible approaches to solving these problems: (Longair, 1997).
• That is just how the Universe is – the initial conditions were set up that way.
• There are only certain classes of Universe in which ‘intelligent’ life could have evolved.

The Universe has to have the appropriate initial conditions and the fundamental constants
of nature should not be too di�erent from their measured values or else there would be no
chance of life forming as we know it. This approach involves the Anthropic Cosmological
Principle according to which, in an extreme version, it is asserted that the Universe is as
it is because we are here to observe it.

• The inflationary scenario for the early Universe. This topic is taken up in Sect. 11.5 and
subsequent sections.

• Seek clues from particle physics and extrapolate that understanding beyond what has been
confirmed by experiment to the earliest phases of the Universe.

• Something else we have not yet thought of. We can think of this in terms of what Donald
Rumsfeld called the ‘unknown unknowns – the ones we don’t know we don’t know’.11

This would certainly involve new physical concepts.
Let us consider aspects of these approaches.

11.3.7 The Limits of Observation

Even the first, somewhat defeatist, approach might be the only way forward if it turned out to
be just too di�cult to disentangle convincingly the physics responsible for setting up the initial
conditions from which our Universe evolved. In 1970, McCrea considered the fundamental
limitations involved in asking questions about the very early Universe, his conclusion being that
we can obtain less and less information the further back in time one asks questions about the
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early Universe (McCrea, 1970). A modern version of this argument would be framed in terms
of the limitations imposed by the existence of a last scattering surface for electromagnetic
radiation at z ⇡ 1000 and those imposed on the accuracy of observations of the Cosmic
Microwave Background Radiation and the large-scale structure of the Universe because of
their cosmic variances.

In the case of the Cosmic Microwave Background Radiation, the observations made by the
Planck experiment are already cosmic variance limited for multipoles l  2000 – we will never
be able to learn much more than we know already about the form of the scalar power-spectrum
on these scales. In these studies, the search for new physics will depend upon the discovering
discrepancies between the standard concordance model and future observations. The optimists
would argue that the advances will come through extending our technological capabilities so
that new classes of observation become cosmic variance limited. For example, the detection of
primordial gravitational waves through their polarisation signature at small multipoles in the
Cosmic Microwave Background Radiation, the nature of dark matter particles and the nature
of the vacuum energy are the cutting edge of fundamental issues for astrophysical cosmology.
These approaches will be accompanied by discoveries in particle physics with the coming
generations of ultra-high energy particle experiments.

It is also salutary to recall that the range of particle energies which have been explored
by the most powerful particle accelerators is about 200 GeV, corresponding to a cosmological
epoch of about 1 microsecond from the Big Bang. This seems very modest compared with
the Planck era which occurred at t ⇠ 10�43 s. Is there really no new physics to be discovered
between these epochs?

It is folly to attempt to predict what will be discovered over the coming years, but we might
run out of luck. How would we then be able to check that the theoretical ideas proposed to
account for the properties of the very early Universe are correct? Can we do better than boot-
strapped self-consistency? The great achievement of modern observational and theoretical
cosmology has been that we have made enormous strides in defining a convincing framework
for astrophysical cosmology through precise observation and the basic problems identified
above can now be addressed as areas of genuine scientific enquiry.

11.3.8 The Anthropic Cosmological Principle

There is certainly some truth in the fact that our ability to ask questions about the origin of the
Universe says something about the sort of Universe we live in. The Cosmological Principle
asserts that we do not live at any special location in the Universe, and yet we are certainly
privileged in being able to make this statement at all. In this line of reasoning, there are only
certain types of Universe in which life as we know it could have formed. For example, the stars
must live long enough for there to be time for biological life to form and evolve into sentient
beings. This line of reasoning is embodied in thei Anthropic Cosmological Principle, first
expounded by Carter in 1974 (Carter, 1974) and dealt with in extenso in the books by Barrow
and Tipler and by Gribbin and Rees (Barrow and Tipler, 1986; Gribben and Rees, 1989).
Part of the problem stems from the fact that we have only one Universe to study – we cannot
go out and investigate other Universes to see if they have evolved in the same way as ours.
There are a number of versions of the Principle, some of them stronger than others. In extreme
interpretations, it leads to statements such as the strong form of the Principle enunciated by
Wheeler (1977),
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Observers are necessary to bring the Universe into being.

It is a matter of taste how seriously one wishes to take this line of reasoning. To many
cosmologists, it is not particularly appealing because it suggests that it will never be possible
to find physical reasons for the initial conditions from which the Universe evolved, or for
the values of the fundamental constants of nature. But some of these problems are really
hard. Weinberg, for example, found it such a puzzle that the vacuum energy density ⌦⇤ is
so very much smaller than the values expected according to current theories of elementary
particles, that he invoked anthropic reasoning to account for its smallness (Weinberg, 1989,
1997). Another manifestation of this type of reasoning is to invoke the range of possible initial
conditions which might come out of the picture of chaotic or eternal inflation (Linde, 1983)
and argue that, if there were at least 10120 of them, then we live in one of the few which has
the right conditions for life to develop as we know it. We leave it to the reader how seriously
these ideas should be taken, having first read Chaps. 12 and 13. Some of us prefer to regard the
Anthropic Cosmological Principle as the very last resort if all other physical approaches fail.

11.4 A Pedagogical Interlude – Distances and Times in Cosmology

First, let us summarise the various times and distances used in the study of the early universe.12

Some of the terminology used in the subsequent discussion may seem somewhat non-intuitive
and so this short pedagogical interlude is intended to help the non-expert appreciate the
importance of the physics which follows.

Comoving radial distance coordinate In order to define a self-consistent distance at a specific
epoch t, we projected the proper distances along our past light cone to that reference epoch
which we take to be the present epoch t0. In terms of cosmic time and scale factor a, the
comoving radial distance coordinate r is then defined to be

r =
π t0

t

c dt
a
=

π 1

a

c da
a €a . (11.6)

Proper radial distance coordinate The same problem arises in defining a proper distance at
an earlier cosmological epoch. We define the proper radial distance rprop to be the comoving
radial distance coordinate projected back to the epoch t. From (11.5), we find

rprop = a
π t0

t

c dt
a
= a

π 1

a

c da
a €a . (11.7)

Particle horizon The particle horizon rH is defined as the maximum proper distance over
which there can be causal communication at the epoch t

rH = a
π t

0

c dt
a
= a

π a

0

c da
a €a . (11.8)

Radius of the Hubble sphere or the Hubble radius The Hubble radius is the proper radial
distance of causal contact at a particular epoch. It is the distance at which the velocity in the
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velocity-distance relation at that epoch is equal to the speed of light. This Hubble sphere has
proper radius

rHS =
c

H(z) =
ac
€a . (11.9)

This is the maximum distance over which causal astrophysical phenomena can take place at
the epoch t.

Event horizon The event horizon rE is defined as the greatest proper radial distance an object
can have if it is ever to be observable by an observer who observes the Universe at cosmic time
t1.

rE = a
π tmax

t1

c dt
a(t) = a

π amax

a1

c da
a €a . (11.10)

The presence of an event horizon reflects the space-time structure of the universe in the infinite
future.

Cosmic time Cosmic time t is defined to be time measured by a fundamental observer who
reads time on a standard clock.

t =
π t

0
dt =

π a

0

da
€a . (11.11)

Conformal time The conformal time is found by projecting time intervals along the past light
cone to the present epoch, using the cosmological time dilation relation. There are similarities
to the definition of comoving radial distance coordinate:

dtconf = d⌧ =
dt
a
. (11.12)

Thus, according to the cosmological time dilation formula, the interval of conformal time is
what would be measured by a fundamental observer observing distant events at the present
epoch t0. At any epoch, the conformal time has value

⌧ =

π t

0

dt
a
=

π a

0

da
a €a . (11.13)

The Past Light Cone
This topic requires a little care because of the way in which the standard models are set up

in order to satisfy the requirements of isotropy and homogeneity. Because of these, Hubble’s
linear relation v = H0r applies at the present epoch to recessions speeds which exceed the
speed of light. Consider the proper distance between two fundamental observers at some epoch
t

rprop = a(t)r , (11.14)
where r is comoving radial distance. Di�erentiating with respect to cosmic time,

drprop

dt
= €ar + a

dr
dt
. (11.15)

The first term on the right-hand side represents the motion of the substratum and, at the present
epoch, becomes H0r . The second term on the right-hand side of (11.14) corresponds to the
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velocity of peculiar motions in the local rest frame at r , since it corresponds to changes of the
comoving radial distance coordinate. The element of proper radial distance is a dr and so, if
we consider a light wave travelling along our past light cone towards the observer at the origin,
we find

vtot = €ar � c . (11.16)

This key result defines the propagation of light from the source to the observer in space-time
diagrams for the expanding Universe.

We can now plot the trajectories of light rays from their source to the observer at t0. The
proper distance from the observer at r = 0 to the past light cone rPLC is

rPLC =

π t

0
vtot dt =

π a

0

vtot da
€a . (11.17)

Notice that, initially the light rays from distant objects are propagating away from the observer
– this is because the local isotropic cosmological rest frame is moving away from the observer
at r = 0 at a speed greater than that of light. The light waves are propagated to the observer
at the present epoch through local inertial frames which expand with progressively smaller
velocities until they cross the Hubble sphere at which the recession velocity of the local frame
of reference is the speed of light. Note that rHS is a proper radial distance. From this epoch
onwards, propagation is towards the observer until, as t ! t0, the speed of propagation towards
the observer is the speed of light.

It is simplest to illustrate how the various scales change with time in specific examples
of standard cosmological models. We consider first the critical world model and then our
reference ⇤ model. It is convenient to present these space-time diagrams with time measured
in units of H�1

0 and distance in units of c/H0. The diagrams shown in Figs. 11.3 and 11.4 follow
the attractive presentation by Davis and Lineweaver, but the time axis has been truncated at
the present cosmological epoch (Davis and Lineweaver, 2004).

The Critical World Model ⌦0 = 1, ⌦⇤ = 0. Two di�erent versions of the space-time diagram
for the critical world model are shown in Fig. 11.3a and b. The world lines of galaxies having
redshifts 0.5, 1, 2 and 3 are shown. As expected, in Fig. 11.3a, the world lines of galaxies
follow the relation r / t2/3. When plotted against comoving radial distance coordinate in
Figs. 11.3b, these become vertical lines. Using the conformal time coordinate, the Hubble
sphere and particle horizon, as well as the past light cone, become straight lines. There is no
event horizon in this model. The initial singularity is now stretched out to become the abscissa
of Fig. 11.3b.

The Reference World Model ⌦0 = 0.3, ⌦⇤ = 0.7. Taking ⌦0 = 0.3 and ⌦⇤ = 0.7, the rate of
change of the scale factor with cosmic time in units in which c = 1 and H0 = 1 is

€a =

0.3
a
+ 0.7(a2 � 1)

�1/2
. (11.18)

The diagrams shown in Fig. 11.4a, b have many of the same general features as Fig. 11.3a, b,
but there are key di�erences, the most significant being associated with the dominance of the
dark energy term at late epochs.
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(a)

(b)

Fig. 11.3 Space-time diagrams for the critical cosmological model, ⌦0 = 1, ⌦⇤ = 0. The times and
distances are measured in units of H�1

0 and c/H0 respectively. (a) This diagram is plotted in terms of
cosmic time and proper distance. (b) The same space-time diagram plotted in terms of conformal time
and comoving radial distance coordinate.

• Note that the cosmic time-scale is stretched out relative to the critical model.
• The world lines of galaxies begin to diverge at the present epoch as the repulsive e�ect of

the dark energy dominates over the attractive force of gravity.
• The Hubble sphere begins to converge to a proper distance of 1.12 in units of c/H0. The

reason for this is that the expansion rate becomes exponential in the future while Hubble’s
constant tends to a constant value of ⌦1/2

⇤ .
• Unlike the critical model, there is an event horizon in the reference model. The reason

is that, although the geometry is flat, the exponential expansion drives galaxies beyond
distances at which there could be causal communication with an observer at epoch t. It
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(a)

(b)

Fig. 11.4 Space-time diagrams for the reference cosmological model, ⌦0 = 0.3, ⌦⇤ = 0.7. The times
and distances are measured in units of H�1

0 and c/H0 respectively (Davis and Lineweaver, 2004).

can be seen from Fig 11.4a that the event horizon tends towards the same asymptotic
value of 1.12 in proper distance units as the Hubble sphere. To demonstrate this, we need
to evaluate the integral

rE = a
π 1

a

da⇥
0.3a + 0.7(a4 � a2)

⇤1/2 . (11.19)

For large values of a, terms other than that in a4 under the square root in the denominator
can be neglected and the integral becomes 1/0.71/2 = 1.12, as found above for the Hubble
sphere. In Fig. 11.4b, the comoving distance coordinates of the Hubble sphere and the
event horizon tend to zero as t ! 1 because, for example, (11.8) has to be divided by a
to convert it to a comoving distance and a ! 1. This shrinking of the Hubble sphere is
the origin of the statement that ultimately we will end up ‘alone in the Universe’.
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The papers by Davis and Lineweaver (2004) and by Ellis and Rothman (1993) repay close
study. The remarkable Appendix B of the former paper indicates how even some of the most
distinguished cosmologists and astrophysicists can lead the unwary newcomer to the subject
astray.

11.5 The Inflationary Universe – Historical Background

The most important conceptual development for studies of the very early Universe can be dated
to about 1980 and the proposal by Guth of the inflationary model for the very early Universe
(Guth, 1981). Guth fully acknowledged that there had been earlier suggestions foreshadowing
his proposal.13 Zeldovich had noted in 1968 that there is a physical interpretation of the
cosmological constant ⇤ in terms of the zero-point fluctuations in a vacuum (Zeldovich, 1968).
Linde in 1974 and Bludman and Ruderman in 1977 had shown that the scalar Higgs fields of
particle physics have similar properties to those which would result in a positive cosmological
constant (Linde, 1974b; Bludman and Ruderman, 1977).14 In 1975, Gurevich noted that an
early initial vacuum-dominated phase would provide a ‘cause of cosmological expansion’, this
solution having later to be joined onto the standard Friedman-Lemaître solutions. Starobinsky,
a member of Zeldovich’s group of astrophysicists/cosmologists, found a class of cosmological
solutions which indeed did just that, starting with a de Sitter phase and ultimately ending
up as Freidman-Lemaître models – he noted that the exponential de Sitter expansion could
lead to a solution of the singularity problem by extrapolating the de Sitter solutions back to
t ! �1. He also predicted that gravitational waves would be generated during the de Sitter
phase at potentially measureable levels. Commenting on this work, Zeldovich also noted that
the exponential expansion would eliminate the horizon problem.

Guth realised that, if there were an early phase of exponential expansion of the Universe,
this could solve the horizon problem and drive the Universe towards a flat spatial geometry,
thus solving the flatness problem, simultaneously. The great merit of Guth’s insights was that
they made the issues of the physics of the early Universe accessible to the community of
cosmologists and spurred an explosion of interest in developing genuine physical theories of
the very early Universe by particle theorists.

Suppose the scale factor, a, increased exponentially with time as a / et/T . Such expo-
nentially expanding models were found in some of the earliest solutions of the Friedman
equations, in the guise of empty de Sitter models driven by what is now termed the vacuum
energy density ⌦⇤ (Lanczos, 1922). Consider a tiny region of the early Universe expanding
under the influence of the exponential expansion. Particles within the region were initially
very close together and in causal communication with each other. Before the inflationary ex-
pansion began, the region had physical scale less than the particle horizon, and so there was
time for it to attain a uniform, homogeneous state. The region then expanded exponentially so
that neighouring points in the substratum were driven to such large distances that they could
no longer communicate by light signals – the causally-connected regions were swept beyond
their particle horizons by the inflationary expansion. At the end of the inflationary epoch, the
Universe transformed into the standard radiation-dominated Universe and the inflated region
continued to expand as a / t1/2.

Let us demonstrate to order of magnitude how the argument runs. The time-scale 10�34 s
is taken to be the characteristic e-folding time for the exponential expansion. Over the interval
from 10�34 s to 10�32 s, the radius of curvature of the Universe increased exponentially by
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a factor of about e100 ⇡ 1043. The horizon scale at the beginning of this period was only
r ⇡ ct ⇡ 3 ⇥ 10�26 m and this was inflated to a dimension of 3 ⇥ 1017 m by the end of the
inflationary era. This dimension then scaled as t1/2, as in the standard radiation-dominated
Universe so that the region would have expanded to a size of ⇠ 3 ⇥ 1042 m by the present
day – this dimension far exceeds the present particle horizon r ⇡ cT0 of the Universe, which
is about 1026 m. Thus, our present Universe would have arisen from a tiny region in the very
early Universe which was much smaller than the horizon scale at that time. This guaranteed
that our present Universe would be isotropic on the large scale, resolving the horizon problem.
At the end of the inflationary era, there was an enormous release of energy associated with the
‘latent heat’ of the phase transition and this reheated the Universe to a very high temperature
indeed.15

The exponential expansion also had the e�ect of straightening out the geometry of the early
Universe, however complicated it may have been to begin with. Suppose the tiny region of the
early Universe had some complex geometry. The radius of curvature of the geometry Rc(t)
scales as Rc(t) / a(t), and so it is inflated to dimensions vastly greater than the present size
of the Universe, driving the geometry of the inflated region towards flat Euclidean geometry,
⌦ = 0, and consequently the Universe must have ⌦0 + ⌦⇤ = 1. It is important that these
two aspects of the case for the inflationary picture can be made independently of a detailed
understanding of the physics of the inflation. There is also considerable freedom about the
exact time when the inflationary expansion could have occurred, provided there are su�cient
e-folding times to isotropise our observable Universe and flatten its geometry.

The problem with this realisation was that it predicted ‘bubbles’ of true vacuum embedded
in the false vacuum, with the result that huge inhomogeneities were predicted. Another concern
was that an excessive number of monopoles were created during the GUT phase transition.
Kibble (1976) showed that, when this phase transition took place, topological defects are
expected to be created, including point defects (monopoles), line defects (cosmic strings)
and sheet defects (domain walls). Kibble also showed that one monopole is created for each
correlation scale at that epoch. Since that scale cannot be greater than the particle horizon at the
GUT phase transition, it is expected that huge numbers of monopoles are created. According
to the simplest picture of the GUT phase transition, the mass density in these monopoles in the
standard Big Bang picture would vastly exceed ⌦0 = 1 at the present epoch (Kolb and Turner,
1990).

In Guth’s original inflationary scenario, the exponential expansion was associated with the
spontaneous symmetry breaking of Grand Unified Theories of elementary particles at very
high energies through a first-order phase transition, only about 10�34 s after the Big Bang,
commonly referred to as the GUT era. The Universe was initially in a symmetric state, referred
to as a false vacuum state, at a very high temperature before the inflationary phase took place.
As the temperature fell, spontaneous symmetry breaking took place through the process of
barrier penetration from the false vacuum state and the Universe attained a lower energy state,
the true vacuum. At the end of this period of exponential expansion, the phase transition took
place, releasing a huge amount of energy.

The model was revised in 1982 by Linde and by Albrecht and Steinhardt who proposed
instead that, rather than through the process of barrier penetration, the transition took place
through a second-order phase transition which did not result in the formation of ‘bubbles’
and so excessive inhomogeneities (Linde, 1982, 1983; Albrecht and Steinhardt, 1982a). This



390 Inflation, Dark Matter and Dark Energy

picture, often referred to as new inflation, also eliminated the monopole problem since the
likelihood of even one being present in the observable Universe was very small.

11.6 New Inflation and the Nu�eld Workshop

By the spring of 1982 several groups were at work fleshing out the details of the new inflationary
scenario: Turner and Kolb at the University of Chicago and Fermilab, Steinhardt and Albrecht at
the University of Pennsylvania, Guth at MIT, Linde and his collaborators in Moscow, Laurence
Abbott at Brandeis, Hawking and others in Cambridge, and John Barrow in Sussex. With
notable exceptions, such as Hawking and Barrow, nearly everyone in this research community
came from a background in particle physics. They all met in Cambridge at a workshop
sponsored by the Nu�eld Foundation to hammer out the developing issues in the physics of
the early Universe.16

Nearly half the lectures at the Nu�eld workshop were devoted to inflation. One important
focus of the conference was the calculation of density perturbations produced during an
inflationary era. Steinhardt, Starobinsky, Hawking, Turner, Lukash and Guth had all realized
that this was a “calculable problem”, the answer being an estimate of the magnitude of the
density perturbations, measured by the dimensionless density contrast � = �⇢/⇢, produced
during inflation. In this intense period of calculation and critical discussion, the particle
physicists adopted Grand Unified Theories of particle physics as the basis for their calculations,
particular attention being paid to Higgs fields which had just the right equation of state to drive
inflation. Preliminary calculations of this magnitude disagreed by an astounding 12 orders of
magnitude: Hawking found � ⇡ 10�4, whereas Steinhardt and Turner (1984) initially estimated
a magnitude of 10�16. After three weeks of e�ort, the various groups working on the problem
had converged on an answer.

Mukhanov and Chibisov (1981) had argued that a de Sitter phase could generate per-
turbations by “stretching” the zero-point fluctuations of quantum fields to significant scales.
This idea, carried out quite independently of Guth’s work, would become the basis for the
generation of seed perturbations in inflationary cosmology. Prior to the workshop, Hawking
had circulated a preprint which argued that initial inhomogeneities in the scalar field � would
result in inflation beginning at slightly di�erent times in di�erent regions; the inhomogeneities
reflect the di�erent “departure times” of the scalar field. Hawking’s preprint claimed that this
resulted in a scale-invariant spectrum of adiabatic perturbations with � ⇡ 10�4, exactly what
was needed in accounts of structure formation.

But others did not trust Hawking’s method. At the heart of the debate was the “gauge
problem”, reflecting the fact that a “perturbed space-time” cannot be uniquely decomposed
into a background space-time plus perturbations. Slicing the space-time along di�erent surfaces
of constant time leads to di�erent magnitudes for the density perturbations. The perturbations
“disappear,” for example, by slicing along surfaces of constant density. In practice, almost all
studies of structure formation used a particular choice of gauge, generally the synchronous
gauge, but this leads to di�culties in interpreting perturbations with length scales greater than
the Hubble radius. Length scales “blow up” during inflation since they scale as R(t) / eHt ,
but the Hubble radius remains fixed since H is approximately constant during the slow roll
phase of inflation.17 For this reason it is especially tricky to calculate the evolution of physical
perturbations using a gauge-dependent formalism.
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Hawking and Guth pursued refinements of Hawking’s approach during the Nu�eld work-
shop, the centerpiece of these calculations being the “time delay” function characterizing the
start of the scalar field’s slow roll down the e�ective potential. This “time delay” function
can be related to the two-point correlation function characterizing fluctuations in � prior to
inflation, and it is also related to the spectrum of density perturbations, since these are assumed
to arise as a result of the di�erences in the time at which inflation ends (see Sect. 11.7.3).

Steinhardt and Turner then enlisted James Bardeen’s assistance in developing a third
approach; he had recently formulated a fully gauge invariant formulation for the study of
density perturbations on all scales (Bardeen 1980). Using Bardeen’s formalism, the three
aimed to give a full account of the behavior of di�erent modes of the field � as these evolved
through the inflationary phase and up to recombination. The physical origin of the spectrum
was traced to the qualitative change in behavior as perturbation modes expand past the Hubble
radius: they “freeze out” as they cross the horizon, and leave an imprint that depends on
the details of the model under consideration. Despite the conflicting assumptions and other
di�erences, the participants of the Nu�eld workshop gave increasing credibility to these results
because of the rough agreement between the three di�erent approaches.

The key results were that inflation leads naturally to an almost Harrison-Zeldovich spectrum
of density fluctuations and these have Gaussian phases (Bardeen et al. 1983). But reducing
the magnitude of these perturbations to satisfy observational constraints required an unnatural
choice of coupling constants. In particular, the self-coupling for the Higgs field apparently
needed to be on the order of 10�8, in contrast to the “natural” value which would be of the
order of 1.

The Higgs model was not successful but it was clear how to develop a “newer inflation”
model. Bardeen, Steinhardt and Turner suggested that the e�ective potential for a scalar field
in a supersymmetric theory, rather than the Higgs field of a Grand Unified Theory, would have
the appropriate properties to drive inflation. Finding a particular particle physics candidate for
the scalar field driving inflation would provide an important independent line of evidence. The
Nu�eld workshop marked the start of this new approach, as the focus shifted to implementing
inflation successfully, rather than starting with a candidate for the field driving inflation derived
from particle physics. The introduction of an “inflaton” field, a scalar field custom-made to
produce an inflationary stage, roughly a year later illustrates this methodological shift.

Following the demise of the minimal GUT models, there was an ongoing e�ort to im-
plement inflation within new models provided by particle physics. Following the Nu�eld
workshop, inflation turned into a “paradigm without a theory,” to borrow Turner’s phrase, as
cosmologists developed a wide variety of models bearing a loose family resemblance. The
models share the basic idea that the early universe passed through an inflationary phase, but
di�er on the nature of the “inflaton” field (or fields) and the form of the e�ective potential
V(�). Keith Olive’s review of the first decade of inflation ended by bemoaning the ongoing
failure of any of these models to renew the strong connection with particle physics achieved
in old and new inflation:
A glaring problem, in my opinion, is our lack of being able to fully integrate inflation into a unification
scheme or any scheme having to do with our fundamental understanding of particle physics and gravity.
. . . An inflaton as an inflaton and nothing else can only be viewed as a toy, not a theory.18

Many di�erent versions of the inflationary picture of the early Universe emerged, an
amusing table of over 100 possibilities being presented by Shellard (Shellard, 2003) and
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Fig. 11.5 Paul Shellard’s table showing the proliferation of inflationary models from an archive search
(Shellard, 2003).

shown in Fig. 11.5.
As a result, there is not a genuine physical theory of the inflationary Universe, but its basic

concepts resolve some of the problems listed in Sect. 11.3. What it also does, and which gives
it considerable appeal, is to suggest an origin for the spectrum of initial density perturbations
as quantum fluctuations on the scale of the particle horizon.

11.7 The Origin of the Spectrum of Primordial Perturbations
As Andrew Liddle and David Lyth (2000) have written,
Although introduced to resolve problems associated with the initial conditions needed for the Big Bang
cosmology, inflation’s lasting prominence is owed to a property discovered soon after its introduction:
It provides a possible explanation for the initial inhomogeneities in the Universe that are believed to
have led to all the structures we see, from the earliest objects formed to the clustering of galaxies to the
observed irregularities in the microwave background.

The theory also makes predictions about the spectrum of primordial gravitational waves
which are accessible to experimental validation.19 The enormous impact of particle theorists
taking these cosmological problems really seriously has enlarged, yet again, the domain of
astrophysical cosmology. For the ‘cosmologist in the street’, the theory of inflation does not
make for particularly easy reading, because the reader should be comfortable with many aspects
of theoretical physics which lie outside the standard tools of the observational cosmologist –
ladder operators, quantum field theory, zero point fluctuations in quantum fields, all of these
applied within the context of curved space-times. Developing the theory of the quantum origin
of density perturbations in detail cannot be carried out with modest e�ort. There is no question,
however, that these remarkable developments are at the cutting edge of cosmological research
and have the potential to reveal new physics.

Let us list some of the clues about the formulation of a successful theory.20
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The equation of state. We know from analyses of the physical significance of the cosmological
constant ⇤ that exponential growth of the scale factor is found if the dark energy has a negative
pressure equation of state p = �%c2. More generally, exponential growth of the scale factor is
found provided the strong energy condition is violated, that is, if p < � 1

3 %c2. To be e�ective
in the very early Universe, the mass density of the scalar field has to be vastly greater than the
value of ⌦⇤ we measure today.

The duration of the inflationary phase. In the example of the inflationary expansion given in
above, we arbitrarily assumed that 100 e-folding times would take place during the inflationary
expansion. A more careful calculation shows that there must have been at least 60 e-folding
times and these took place in the very early Universe, much earlier than those which have
been explored experimentally by particle physics experiments. It is customary to assume that
inflation began not long after the Planck era, but there is quite a bit of room for manoeuvre.

The shrinking Hubble sphere. There is a natural way of understanding how fluctuations can
be generated from processes in the very early Universe. It is helpful to revisit the conformal
diagrams for world models discussed in Sect. 11.4, in particular, Fig. 11.4b. Recall that these
diagrams are exact in the sense that the comoving radial distance coordinate and conformal
time are worked out for the reference model with ⌦0 = 0.3 and ⌦⇤ = 0.7. The e�ect of using
conformal coordinates is to stretch out time in the past and shrink it into the future. Notice
that, because of the use of linear scales in the ordinate, the radiation-dominated phase of the
standard Big Bang is scarcely visible.

In Fig. 11.6a, there are two additions to Fig. 11.4b. The redshift of 1000 is shown cor-
responding to the last scattering surface of the Cosmic Microwave Background Radiation.
The intersection with our past light cone is shown and then a past light cone from the last
scattering surface to the singularity at conformal time ⌧ = 0 is shown as a shaded triangle.
This is another way of demonstrating the horizon problem – the region of causal contact is
very small compared with moving an angle of 180� over the sky which would correspond to
twice the distance between the origin and the comoving radial distance coordinate at 3.09.

Let us now add the inflationary era to Fig. 11.6a. It is useful to regard the end of the
inflation era as the zero of time for the standard Big Bang and then to extend the diagram back
to negative conformal times. In other words, we shift the zero of conformal time very slightly to,
say, 10�32 s and then we can extend the light cones back through the entire inflationary era (Fig.
11.6b). This construction provides another way of understanding how the inflationary picture
resolves the causality problem. The light cones have unit slope in the conformal diagram and
so we draw light cones from the ends of the element of comoving radial distance at ⌧ = 0 from
the last scattering surface. Projecting far enough back in time, the light cones from opposite
directions on the sky overlap, represented by the dark grey shaded area in Fig. 11.6b. This is
the region of causal contact in the very early Universe.

There is, however, an even better way of understanding what is going on. We distinguished
between the Hubble sphere and the particle horizon in Sect. 11.4 – now this distinction becomes
important. The particle horizon is defined as the maximum distance over which causal contact
could have been made from the time of the singularity to a given epoch. In other words, it is not
just what happened at a particular epoch which is important, but the history along the past light
cone. Writing the exponential inflationary expansion of the scale factor as a = a0 exp[H(t�ti)],
where a0 is the scale factor when the inflationary expansion began at ⌧i, rHS = c/H and the
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Fig. 11.6 (a) A repeat of conformal diagram Fig. 12.2c in which conformal time is plotted against
comoving radial distance coordinate. Now, the last scattering surface at the epoch of recombination is
shown as well as the past light cone from the point at which our past light cone intersects the last scattering
surface. (b) An extended conformal diagram now showing the inflationary era. The time coordinate is
set to zero at the end of the inflationary era and evolution of the Hubble sphere and the past light cone at
recombination extrapolated back to the inflationary era.
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comoving Hubble sphere has radius rHS(com) = c/(Ha). Since H is a constant throughout
most of the inflationary era, it follows that the comoving Hubble sphere decreases as the
inflationary expansion proceeds.

We now need to join this evolution of the comoving Hubble sphere onto its behaviour after
the end of inflation, that is, join it onto Fig. 11.6a. The expression for conformal time during
the inflationary era is

⌧ =

π
da
a €a , (11.20)

and so, integrating and using the expression for rHS(com), we find

⌧ = constant � rHS(com)
c

. (11.21)

This solution for rHS(com) is joined on to the standard result at the end of the inflationary
epoch, as illustrated in Fig. 11.6b. The complete evolution of the Hubble sphere is indicated
by the heavy line labelled ‘Hubble sphere’ in that diagram.

Fig. 11.6b illustrates very beautifully how the inflationary paradigm solves the horizon
problem. It will be noticed that the point at which the Hubble sphere crosses the comoving
radial distance coordinate of the last scattering surface, exactly corresponds to the time when
the past light cones from opposite directions on the sky touch at conformal time �3. This
is not a coincidence – they are di�erent ways of stating that opposite regions of the Cosmic
Microwave Background were in causal contact at conformal time t = �3.

But we learn a lot more. Because any object preserves its comoving radial distance coor-
dinate for all time, as represented by the vertical lines in Fig. 11.6, it can be seen that, in the
early Universe, objects lie within the Hubble sphere, but during the inflationary expansion,
they pass through it and remain outside it for the rest of the inflationary expansion. Only when
the Universe transforms back into the standard Friedman model does the Hubble sphere begin
to expand again and objects can then ‘re-enter the horizon’. Consider, for example, the region
of the Universe out to redshift z = 0.5 which corresponds to one of the comoving coordinate
lines in Fig. 11.6b. It remained within the Hubble sphere during the inflationary era until
conformal time ⌧ = �0.4 after which it was outside the horizon. It then re-entered the Hubble
sphere at conformal time ⌧ = 0.8. This behaviour occurs for all scales and masses of interest
in understanding the origin of structure in the present Universe.

Since causal connection is no longer possible on scales greater than the Hubble sphere,
it follows that objects ‘freeze out’ when they pass through the Hubble sphere during the
inflationary era, but they come back in again and regain causal contact when they recross the
Hubble sphere. This is one of the key ideas behind the idea that the perturbations from which
galaxies formed were created in the early Universe, froze out on crossing the Hubble sphere
and then grew again on re-entering it at conformal times ⌧ > 0.

Notice that, at the present epoch, we are entering a phase of evolution of the Universe when
the comoving Hubble sphere about us has begun to shrink again. This can be seen in the upper
part of Fig. 11.6b and is entirely due to the fact that the dark energy is now dominating the
expansion and its dynamics are precisely those of another exponential expansion. In fact, the
Hubble sphere tends asymptotically to the line labelled ‘event horizon’ in Fig. 11.6a.
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11.7.1 Scalar Fields

As Baumann (2007) noted, there are three equivalent conditions necessary to produce an
inflationary expansion in the early universe:

• The decreasing of the Hubble sphere during the early expansion of the Universe;
• An accelerated expansion;
• Violation of the strong energy condition, meaning, p < �%c2/3.

How can this be achieved physically? To quote Baumann’s words, written before the discovery
of the Higgs boson in 2012,:
Answer: scalar field with special dynamics! Although no fundamental scalar field has yet been detected in
experiments, there are fortunately plenty of such fields in theories beyond the standard model of particle
physics. In fact, in string theory for example there are numerous scalar fields (moduli), but it proves very
challenging to find just one with the right characteristics to serve as an inflaton candidate.

The results of calculations of the properties of the scalar field �(t), which is assumed to be
homogeneous at a given epoch, are as follows. There are a kinetic energy €�2/2 and a potential
energy, or self-interaction energy, V(�) associated with the field. Putting these through the
machinery of field theory results in expressions for the density and pressure of the scalar field:

%� =
1
2
€�2 + V(�) ; p� =

1
2
€�2 � V(�) (11.22)

Clearly the scalar field can result in a negative pressure equation of state, provided the potential
energy of the field is very much greater than its kinetic energy. In the limit in which the kinetic
energy is neglected, we obtain the equation of state p = �%c2, where the c2, which is set equal
to one by professional field theorists, has been restored.

To find the time evolution of the scalar field, we combine (11.21) with the Einstein field
equations with the results:

H2 =
1
3

✓
1
2
€�2 + V(�)

◆
; ‹� + 3H €� + V(�),� = 0 . (11.23)

where V(�),� means the derivative of V(�) with respect to �. Thus, to obtain the inflationary
expansion over many e-folding times, the kinetic energy term must be very small compared
with the potential energy and the potential energy term must be very slowly varying with time.
This is formalised by requiring the two slow-roll parameters ✏(�) and ⌘(�) to be very small
during the inflationary expansion.21 These parameters set constraints upon the dependence of
the potential energy function upon the field � and are formally written:

✏(�) ⌘ 1
2

✓
V,�
V

◆2
; ⌘(�) ⌘

V,��
V

with ✏(�), |⌘(�)| ⌧ 1 . (11.24)

where V(�),�� means the second derivative of V(�) with respect to �. Under these conditions,
we obtain what we need for inflation, namely,

H2 =
1
3

V(�) = constant and a(t) / eHt . (11.25)

At this stage, it may appear that we have not really made much progress since we have adjusted
the theory of the scalar field to produce what we know we need. The bonus comes when
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we consider fluctuations in the scalar field and their role in the formation of the spectrum of
primordial perturbations.

11.7.2 The Quantised Harmonic Oscillator

The key result can be illustrated by the elementary quantum mechanics of a harmonic oscillator.
The solutions of Schrödinger’s equation for a harmonic potential have quantised energy levels
and wave functions

E =
⇣
n + 1

2

⌘
~! ;  n = Hn(⇠) exp

⇣
� 1

2⇠
2
⌘
, (11.26)

where Hn(⇠) is the Hermite polynomial of order n and ⇠ =
p
�x. For the simple harmonic

oscillator, �2 = am/~2, where a is the constant in the expression for the harmonic potential
V = 1

2 ax2 and m is the reduced mass of the oscillator.
We are interested in fluctuations about the zero-point energy, that is, the stationary state

with n = 0. The zero-point energy and Hermite polynomial of order n = 0 are

E = 1
2~! and H0(⇠) = constant . (11.27)

The first expression is the well-known result that the oscillator has to have finite kinetic energy
in the ground state. It is straightforward to work out the variance of the position coordinate x
of the oscillator,22

hx2i = ~
2!m

. (11.28)

These are the fluctuations which must necessarily accompany the zero-point energy of the
vacuum fields. This elementary calculation sweeps an enormous number of technical issues
under the carpet. Baumann’s clear presentation of the proper calculation can be warmly
recommended. It is reassuring that his final answer agrees exactly with the above results for
the one-dimensional harmonic oscillator.

11.7.3 The Spectrum of Fluctuations in the Scalar Field

We need only one more equation – the expression for the evolution of the vacuum fluctuations
in the inflationary expansion. The inflaton field is decomposed into a uniform homogeneous
background and a perturbed component ��which is the analogue of the deviation x of the zero
point oscillations of the harmonic oscillator. Baumann outlines the derivation of this equation,
warning of the numerous technical complexities which have to be dealt with. In Bertschinger’s
review of the physics of inflation, he deals with these issues and finds the following equation:

‹��k + 3
✓ €a

a

◆
€��k + (k2

c c2
s � 2) ��k = 0 , (11.29)

where  is the curvature of space at the present epoch (Bertschinger, 1996). This has a
familiar form which can be understood by comparing it with (6.8) for the evolution of density
perturbations in the Friedman models

d2�

dt2 + 2
✓ €a

a

◆
d�
dt
= �(4⇡G%0 � k2c2

s ) (11.30)

where k is the proper wavenumber and cs is the speed of sound.23
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Since we are interested in flat space solutions,  = 0. Furthermore, for matter with equation
of state p = �%c2, the speed of sound is the speed of light, which according to Baumann’s
conventions is set equal to unity, and so we obtain an equation of the form (11.28). A big
advantage of Baumann’s proper derivation of (11.28) is that it can be applied on superhorizon
scales as well as for those within the horizon, thanks to the use of Bardeen’s gauge-invariant
formulation of the perturbation equation.

We recognise that (11.28) is the equation of motion for a damped harmonic oscillator. If the
‘damping term’ 3H €��k is set equal to zero, we find harmonic oscillations, just as in the case of
the Jeans’ analysis of Sect. 11.3. On the other hand, for scales much greater than the radius of
the Hubble sphere, � � c/H, an order of magnitude calculation shows that the damping term
dominates and the velocity €��k tends exponentially to zero, corresponding to the ‘freezing’ of
the fluctuations on superhorizon scales.

Both x and ��k have zero point fluctuations in the ground state. In the case of the harmonic
oscillator, we found hx2i / !�1. In exactly the same way, we expect the fluctuations in ��k to
be inversely proportional to the ‘angular frequency’ in (11.29), that is,

h(��k)2i /
1

k/a
/ � , (11.31)

where � is the proper wavelength. Integrating over wavenumber, we find the important result

h(��)2i / H2 . (11.32)

At the end of the inflationary expansion, the scalar field is assumed to decay into the
types of particles which dominate our Universe at the present epoch, releasing a vast amount
of energy which reheats the contents of the Universe to a very high temperature. The final
step in the calculation is to relate the fluctuations �� to the density perturbations in the
highly relativistic plasma in the post-inflation era. In the simplest picture, we can think of this
transition as occurring abruptly between the era when p = �%c2 and the scale factor increases
exponentially with time, as in the de Sitter metric, to that in which the standard relativistic
equation of state p = 1

3 %c2 applies with associated variation of the inertial mass density with
cosmic time % / H2 / t�2 (see (9.7)). Guth and Pi used the time-delay formalism which
enables the density perturbation to be related to the inflation parameters (Guth and Pi, 1982)
(see Sect. 11.6.1). The end results is

�%

%
/ H2

⇤
€�⇤
. (11.33)

where H⇤ and �⇤ are their values when the proper radius of the perturbation is equal to the
Hubble radius.

This order of magnitude calculation illustrates how quantum fluctuations in the scalar
field � can result in density fluctuations in the matter which all have the more or less the
same amplitude when they passed through the horizon in the very early Universe. They then
remained frozen in until they re-entered the horizon very much later in the radiation-dominated
era, as illustrated in Fig. 11.6b.

This schematic calculation is only intended to illustrate why the inflationary paradigm
is taken so seriously by theorists. It results remarkably naturally in the Harrison-Zeldovich
spectrum for the spectrum of primordial perturbations.
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In the full theory, the values of the small parameters ✏ and ⌘ defined by (11.23) cannot be
neglected and they have important consequences for the spectrum of the perturbations and the
existence of primordial gravitational waves. Specifically, the spectral index of the perturbations
on entering the horizon is predicted to be

nS � 1 = 2⌘ � 6✏ . (11.34)

Furthermore, tensor perturbations, corresponding to gravitational waves, are also expected to be
excited during the inflationary era. Quantum fluctuations generate quadrupole perturbations
and these result in a similar almost scale-invariant power spectrum of perturbations. Their
spectral index is predicted to be

nT � 1 = �2✏ , (11.35)

where scale-invariance corresponds to nT = 1. The tensor-to-scalar ratio is defined as

r =
�2

T

�2
S
= 16✏ , (11.36)

where �2
T and �2

S are the power spectra of tensor and scalar perturbations respectively.
These results illustrate why the deviations of the spectral index of the observed perturbations

from the value nS = 1 are so important. The fact that best fit value nS = 0.961+0.018
�0.019 is slightly,

but significantly, less than one suggests that there may well be a background of primordial
gravitational waves. The detection of a background of gravitational waves is really a very great
observational challenge, but they provide a remarkably direct link to processes which may have
occurred during the inflationary epoch. To many cosmologists, this would be the ‘smoking
gun’ which sets the seal on the inflationary model of the early Universe.

Whilst the above calculation is a considerable triumph for the inflationary scenario, we
should remember that there is as yet no physical realisation of the scalar field. Although
the scale-invariant spectrum is a remarkable prediction, the amplitude of the perturbation
spectrum is model dependent. There are literally hundreds of possible inflationary models
depending upon the particular choice of the inflationary potential. We should also not neglect
the possibility that there are other sources of perturbations which could have resulted from
various types of topological defect, such as cosmic strings, domain walls, textures and so on
(Shellard, 2003). Granted all these caveats, the startling success of the inflationary model in
accounting for the observed spectrum of fluctuations in the Cosmic Microwave Background
Radiation has made it the model of choice for studies of the early Universe.

11.8 Topological Defects

Throughout the 1980s and 1990s the most important alternative account of the origins of
structure was based on topological defects. These ideas were first studied in the 1970s prior
to the introduction of the concepts of inflation, as a general feature of spontaneous symmetry-
breaking phase transitions in the early universe. Several theorists took up the challenge of
understanding whether defects formed in the early universe could produce the appropriate
seeds for structure formation.24

Starting in the early 1970s the ideas of spontaneous symmetry breaking were applied to
cosmology. Extrapolating the Friedman-Lemaître models back to very early epochs, the early
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universe reaches arbitrarily high temperatures at early times. Kirzhnits (1972) suggested that
symmetries in particle physics would be restored at su�ciently high temperatures, by analogy
with symmetry restoration in condensed matter systems. Further calculations of symmetry
restoration in the Standard Model of particle physics supported the idea that as the universe
cooled it passed through a series of phase transitions that broke the symmetries between various
interactions. Many symmetry breaking phase transitions in condensed matter systems lead to
the formation of topological defects, such as vortices in liquid helium and so it is natural to
expect that defects also arise in early universe phase transitions.

In a seminal paper, Kibble (1976) argued that topological defects would be produced as
a result of the horizon structure of the early universe. Given that the correlation length of the
order parameter is bounded by the horizon distance, the phase transition produces domains
in which the order parameter takes on di�erent values determined by random fluctuations.
The implication is that there must be a “defect,” namely a region of space in which the
fields cannot reach the vacuum state, and instead remain trapped in a state of higher energy.
The nature of these regions of higher energy is fixed by the structure of the manifold. In
the case of a non-simply connected vacuum manifold, the phase transition leads to two-
dimensional defects called “cosmic strings.” There are several other possibilities. A phase
transition breaking a discrete symmetry leads to regions in which the order parameter takes on
discrete values separated by domain walls, which are three-dimensional surfaces in space-time.
If the vacuum manifold has non-contractible two-spheres rather than circles, then the phase
transition produces point-like defects, such as magnetic monopoles; for non-contractible three-
spheres the corresponding zero-dimensional defects are called “textures,” event-like defects
that do not have a stable localized core.

Early studies showed that domain walls and some types of monopoles had disastrous
consequences, conflicting with observational constraints by several orders of magnitude (see,
for example, Zeldovich et al. 1975; Zeldovich and Khlopov 1978; Guth and Tye 1980). However,
other types of defects – in particular, cosmic strings – were more plausible candidates for the
seeds of structure formation. The defects are inherently stable regions of higher energy density,
whose scale is set by the energy scale of the phase transition. The defects have an important
impact on the dynamical evolution of the system following the phase transition, and in particular
it is plausible that they provide seeds that are subsequently enhanced by gravitational instability,
as described by linear perturbation theory. These theories passed an important initial test in that
they lead to an approximately scale-invariant Harrison-Zeldovich spectrum of perturbations,
compatible with the first generation of Cosmic Microwave Background Radiation observations
and the general picture of structure formation described above. However, there are important
general di�erences between the inflationary account and that provided by topological defects,
and these were clarified by a substantial research e�ort throughout the 1980s and 1990s.

To determine whether topological defects su�ce as the primary mechanism for producing
seeds for structure formation, researchers had to tackle two challenging problems. The first was
to describe the phase transition itself and determine the nature of the defects produced with
su�cient quantitative detail to determine the consequences for the later stages of evolution.
Second, one had to describe the subsequent evolution of the network of defects left over
following the phase transition over a wide range of dynamical scales. Throughout the 1980s,
for example, the general picture of how strings seeded galaxy formation changed considerably
in light of numerical simulations establishing details regarding the size of typical closed loops
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Fig. 11.7 This figure (from Albrecht et al. 1996) shows the predicted angular power spectrum of
temperature fluctuations in the Cosmic Background Radiation from a particular model of cosmic strings
(dashed line), and a generic inflationary model (solid line).

of strings and the behavior of open strings. These two problems are exacerbated by uncertainty
regarding the relevant fundamental physics. The details of the phase transitions depend on
specific features of the physics – specifically concerning proposed extensions of the Standard
Model.

Despite these di�culties, by about 1997 there was a consensus regarding the generic
consequences of structure formation through defects and the contrast with the consequences of
inflation. Perturbations produced in defect theories “decohere”, as first noted by Albrecht et al.
(1996), in the sense that fluctuations at all wave-numbers are not in phase. This is a consequence
of the non-linear evolution of the source term, which leads to mixing of perturbations across
di�erent modes. The perturbations are also non-Gaussian due to the correlations that this
mixing produces between perturbations. Finally, defects generate scalar, vector, and tensor
perturbations of roughly equal magnitude.

The most striking contrast with the inflationary theories is that inflation leads to phase
coherence of the perturbations because the dynamics leads to synchronization of the Fourier
modes with the consequent prediction of Doppler peaks. The position of the first peak also
di�ers between the inflationary and topological defect models, with defect models generally
predicting a primary peak at a larger multipole moment (l � 300) than inflation (l ⇡ 200).
Observational results starting in the late 1990s and culminating in the WMAP results provided
decisive support for inflation with respect to both of these features.

In addition to the physical contrast between the mechanisms for structure formation, there
are important methodological contrasts between the two approaches. First, despite uncertainty
regarding the detailed physics of the phase transitions, the account of structure formation
via defects is su�ciently constrained by general theoretical principles to produce specific
observational signatures. Physicists working on defects often highlighted this rigidity as a virtue



402 Inflation, Dark Matter and Dark Energy

of the theory, characterizing it as “falsifiable” in a Popperian sense. Second, accounts based
on topological defects do not address the problems related to initial conditions highlighted
by Guth. Those who accepted Guth’s approach to fine-tuning and initial conditions could still
use defects, however. Inflation could still be invoked to solve the problems related to initial
conditions (see, for example, Vilenkin and Shellard 2000), as long as inflation set the stage for
subsequent phase transitions that would produce appropriate topological defects.

11.9 Baryogenesis

A key contribution of particle physics to studies of the early Universe concerns the baryon-
asymmetry problem, a subject referred to as baryogenesis. In a prescient paper of 1967,
Sakharov enunciated the three conditions necessary to account for the baryon-antibaryon
asymmetry of the Universe (Sakharov, 1967). Sakharov’s rules for the creation of non-zero
baryon number from an initially baryon symmetric state are:

• Baryon number must be violated;
• C (charge conjugation) and CP (charge conjugation combined with parity) must be vio-

lated;
• The asymmetry must be created under non-equilibrium conditions.

The reasons for these rules can be readily appreciated from simple arguments (Kolb and
Turner, 1990). Concerning the first rule, it is evident that, if the baryon-asymmetry developed
from a symmetric high temperature state, baryon number must have been violated at some
stage – otherwise, the baryon-asymmetry would have to be built into the model from the
very beginning. The second rule is necessary in order to ensure that a net baryon number is
created, even in the presence of interactions which violate baryon conservation. The third rule
is necessary because baryons and antibaryons have the same mass and so, thermodynamically,
they would have the same abundances in thermodynamic equilibrium, despite the violation of
baryon number and C and CP invariance.

There is evidence that all three rules can be satisfied in the early Universe from a com-
bination of theoretical ideas and experimental evidence from particle physics. Thus, baryon
number violation is a generic feature of Grand Unified Theories which unify the strong and
electroweak interactions – the same process is responsible for the predicted instability of the
proton. C and CP violation have been observed in the decay of the neutral K0 and K̄0 mesons.
The K0 meson should decay symmetrically into equal numbers of particles and antiparticles
but, in fact, there is a slight preference for matter over antimatter, at the level of 10�3, very
much greater than the degree of asymmetry necessary for baryogenesis, ⇠ 10�8. The need for
departure from thermal equilibrium follows from the same type of reasoning which led to the
primordial synthesis of the light elements. As in that case, so long as the time-scales of the
interactions which maintained the various constituents in thermal equilibrium were less than
the expansion time-scale, the number densities of particles and antiparticles of the same mass
would be the same. In thermodynamic equilibrium, the number densities of di�erent species
did not depend upon the cross-sections for the interactions which maintain the equilibrium. It
is only after decoupling, when non-equilibrium abundances were established, that the number
densities depended upon the specific values of the cross-sections for the production of di�erent
species.
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In a typical baryogenesis scenario, the asymmetry is associated with some very massive
boson and its antiparticle, X, X , which are involved in the unification of the strong and elec-
troweak forces and which can decay into final states which have di�erent baryon numbers.
Kolb and Turner provided a clear description of the principles by which the observed baryon-
asymmetry can be generated at about the epoch of grand unification or soon afterwards, when
the very massive bosons can no longer be maintained in equilibrium (Kolb and Turner, 1990).
Although the principles of the calculations are well defined, the details are not understood,
partly because the energies at which they are likely to be important are not attainable in labo-
ratory experiments, and partly because predicted e�ects, such as the decay of the proton, have
not been observed. Thus, although there is no definitive evidence that this line of reasoning
is secure, well-understood physical processes of the type necessary for the creation of the
baryon-antibaryon asymmetry exist. The importance of these studies goes well beyond their
immediate significance for astrophysical cosmology. As Kolb and Turner remark,

. . . in the absence of direct evidence for proton decay, baryogenesis may provide the strongest, albeit
indirect, evidence for some kind of unification of the quarks and the leptons.

11.10 The Planck Era

Enormous progress has been made in understanding the types of physical process necessary
to resolve the basic problems of cosmology, but it is not clear how independent evidence for
them can be found. The methodological problem with these ideas is that they are based upon
extrapolations to energies vastly exceeding those which can be tested in terrestrial laboratories.
Cosmology and particle physics come together in the early Universe and they boot-strap their
way to a self-consistent solution. This may be the best that we can hope for but it would be
preferable to have independent constraints upon the theories.

A representation of the evolution of the Universe from the Planck era to the present day
is shown in Fig. 11.8. The Planck era is that time in the very remote past when the energy
densities were so great that a quantum theory of gravity is needed. On dimensional grounds,
this era must have occurred when the Universe was only about tPl ⇠ (hG/c5)1/2 ⇠ 10�43 s old.
Despite enormous e�orts on the part of theorists, there is no quantum theory of gravity and so
we can only speculate about the physics of these extraordinary eras.

Being drawn on a logarithmic scale, Fig. 11.8 encompasses the evolution of the whole of
the Universe, from the Planck area at t ⇠ 10�43 s to the present age of the Universe which is
about 4 ⇥ 1017 s or 13.6 ⇥ 109 years old. Halfway up the diagram, from the time when the
Universe was only about a millisecond old, to the present epoch, we can be confident that the
Big Bang scenario is the most convincing framework for astrophysical cosmology.

At times earlier than about 1 millisecond, we quickly run out of known physics. This has
not discouraged theorists from making bold extrapolations across the huge gap from 10�3 s
to 10�43 s using current understanding of particle physics and concepts from string theories.
Some impression of the types of thinking involved in these studies can be found in the ideas
expounded in the excellent volume The Future of Theoretical Physics, celebrating the 60th
birthday of Stephen Hawking (Gibbons et al., 2003). Maybe many of these ideas will turn
out to be correct, but there must be some concern that some fundamentally new physics will
emerge at higher and higher energies before we reach the GUT era at t ⇠ 10�36 s and the
Planck era at t ⇠ 10�43 s. This is why the particle physics experiments being carried out at
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Fig. 11.8 A schematic diagram illustrating the evolution of the Universe from the Planck era to the
present time. The shaded area on the right of the diagram indicates the regions of known physics.

the Large Hadron Collider at CERN are of such importance for astrophysics and cosmology.
The discovery of the Higgs boson was a real triumph (Aad et al., 2012), providing essential
support for our understanding of the standard model of particle physics. In addition, there is the
possibility of discovering new types of particles, such as the lightest supersymmetric particle
or new massive ultra-weakly interacting particles, as the accessible range of particle energies
increases from about 100 GeV to 1 TeV. These experiments should provide clues to the nature
of physics beyond the standard model of particle physics and will undoubtedly feed back into
understanding of the physics of the early Universe.

It is certain that at some stage a quantum theory of gravity is needed which may help resolve
the problems of singularities in the early Universe. The singularity theorems of Penrose and
Hawking show that, according to classical theories of gravity under very general conditions,
there is inevitably a physical singularity at the origin of the Big Bang, that is, as t ! 0, the
energy density of the Universe tends to infinity. However, it is not clear that the actual Universe
satisfies the various energy conditions required by the singularity theorems, particularly if the
negative pressure equation of state p = �%c2 holds true in the very early Universe. All these
considerations show that new physics is needed if we are to develop a convincing physical
picture of the very early Universe.

Notes
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1The contents of the book Galaxy Formation (Longair, 2008) by one of us (MSL) has been used extensively in
preparing this chapter. It may be consulted for more of the technical details of the observations and the theoretical
background.

2The method Zwicky used to estimate the total mass of the cluster had been derived by Eddington in 1916 to
estimate the masses of star clusters. Eddington derived the virial theorem which relates the total internal kinetic energy
T of the stars or galaxies in a cluster to the total gravitational potential energy, |U |, assuming the system to be in
a state of statistical equilibrium under gravity (Eddington, 1916). The total mass of the cluster can be found from
the virial theorem to be M ⇡ 2Rcl hv2 i/G. Zwicky measured the velocity dispersion hv2 i/ of the galaxies in the
Coma cluster and found that there was much more mass in the cluster than could be attributed to the visible masses
of galaxies. In solar units of M�/L� , the ratio of mass-to-optical luminosity of a galaxy such as our own is about 3,
whereas for the Coma cluster the ratio was found to be about 500. In other words, there must be about 100 times more
dark, or hidden, matter as compared with visible matter in the cluster.

3The significance of these flat rotation curves can be appreciated from the following argument. For simplicity,
assume that the distribution of mass in the galaxy is spherically symmetric, so that we can write the mass within radius
r as M( r). According to Gauss’s law for gravity, we can then find the radial acceleration at radius r by placing
the mass within radius r , M( r), at the centre of the galaxy. Then, equating the centripetal acceleration at radius
r to the gravitational acceleration, we find M( r) = v2

rot(r) r/G . If the rotation curve of the spiral galaxy is flat,
vrot = constant, M( r) / r and so the mass within radius r increases linearly with distance from the centre. This
contrasts dramatically with the distribution of light in the discs, bulges and haloes of spiral galaxies which decrease
exponentially with increasing distance from the centre.

4See the discussion of Sect. 10.10.1.
5An outline of the physics involved is given in Sect. 13.3 of Galaxy Formation (2008).
6See Chap. 8.
7The reasons for this are illustrated in Sect. 11.4.2 of the book Galaxy Formation (2008). See also Fig. 14.10 of

that text.
8Note that this is only one aspect of fine-tuning in order to ensure that there are observers capable of asking these

questions in the Universe. See chap. 13.
9More exactly, the equation of state for a Higgs field takes this form if derivative terms are negligible and the

e�ective potential is displaced from its true minima. The stress-energy tensor for the scalar field takes the form:

Tab = ra�rb� � 1
2
gab

⇣
gcdrcrd� �V (�)

⌘
. (11.37)

If the first two terms are negligible, we find Tab ⇡ 1
2gabV (�), which is the equation of state discussed in the main

text. See also Sect. 11.7.
10This calculation of the theoretical value of the cosmological constant was first carried out by Wolfgang Pauli in

the 1930s, but he did not take the result seriously. See, for example, Rugh and Zinkernagel (2000).
11Donald Rumsfeld was President George W. Bush’s United States Secretary of Defense and played a central role in

the planning of the United States’ response to the September 11 attacks, which included two wars, one in Afghanistan
and one in Iraq.

12For a more detailed discussion of these topics, see Sect. 12.2 of Galaxy Formation (Longair, 2008).
13These earlier works, particularly the work of the Soviet theorists Sakharov, Zeldovich, Starobinsky and their

colleagues are surveyed in detail by Smeenk (2005).
14A popular account of the history of the development of ideas about the inflation picture of the early Universe is

contained in Guth’s book The Inflationary Universe: The Quest for a New Theory of Cosmic Origins (Guth, 1997).
The pedagogical review by Lineweaver can also be recommended. He adopts a somewhat sceptical attitude to the
concept of inflation and our ability to test inflationary models through confrontation with observations (Lineweaver,
2005).

15In fact, the situation is somewhat more complex than this simple picture. Although the matter and radiation in the
very early universe would have been homogenised on the small-scale, the matter and energy densities of everything
other than the inflaton field are rapidly diluted during inflationary expansion – pre-existing matter and radiation are
dynamically irrelevant after the first few e-folds. What explains the uniformity of di�erent regions is instead the
fact that the inflaton field decays and reheats the universe in the same fashion in di�erent regions. Why then do the
temperatures of the CMB in di�erent patches of the sky agree? The inflaton field had a homogeneous state over
some region, triggered an inflationary state that proceeded in the same way throughout this region, and then decayed
into other types of matter and energy at the end of inflation. But, inflation does not guarantee that the outcome of
inflation is a smooth universe by itself – it instead magnifies any non-uniformities that exist at much shorter length
scales to cosmologically relevant scales (See the discussion of Sect. 11.7). The simple picture has to be combined
with an assumption, which has generally agreed to be quite plausible, about the small-scale non-uniformities in a
pre-inflationary patch.

16This section draws upon material contained in Smeenk (2005) and Smeenk (2018). See Vilenkin and Shellard
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(2000) for a masterful overview of this line of research, which includes more detailed discussion of the historical
development of the field and references to original papers.

17See Sect. 11.7.1
18Olive (1990), pp. 389
19There are now several recommendable books on this subject (Liddle and Lyth, 2000; Dodelson, 2003; Mukhanov,

2005).
20The pedagogical exposition by Baumann (2007) is a very helpful guide.
21See also footnote 9.
22See Longair (2008), Sec. 20.5.5.
23Equation (11.29) is often referred to as the Mukhanov-Sasaki equation for the evolution of linearised perturbations

on sub- and super-horizon scales during the inflationary era.
24This section draws upon material contained in Smeenk (2005) and Smeenk (2018).


