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Jupiter’s moon Io
Most volcanic activity in the solar
system, as predicted by Peale et
al. (1979) prior to Voyager,
Galileo, ...

Where does the energy come
from?



Introduction Background Eliminativists Going Quasi-Local Concluding Remarks

Tidal Heating
Net work done by an external tidal field on an isolated body (not
necessarily “heat,” but usually is in astrophysical cases).

Isolated := three scales large compared to body, (i) radius of
curvature, (ii) scale of inhomogeneity, and (iii) time scale for
curvature changes.

Relevant for satellites; black holes; binary neutron stars; etc.
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General result
dW

dt
= −1

2
Eij

dIij
dt

, (1)

where W is the work, Iij is the mass quadropole moment for the
isolated body and Eij := Ri0j0 represents the external curvature.

(Thorne and Hartle 1985 ...Thorne 1998, Purdue 1999, Favata 2001)



Electromagnetism
Energy density of EM field (in vacuum):

u =
1
2

(
ε0E2 +

1
µ0

B2
)

(2)

Energy-momentum flux (Poynting
vector):

S =
1
µ0

(E× B) (3)

Conservation (in vacuo):

− ∂

∂t

∫

v
udV =

∮

∂V
S · dA+

∫

V
J · EdV

(4)

(J is current density.)

Radiative Heating
Conversion of EM energy
into other forms.

Conservation principle
applies, can be used to
calculate amount of
radiative heating.
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Tidal Heating
There are no local analogs of expressions for:
I Energy density of gravitational field
I Energy-momentum flux

And hence no integral form of conservation, over finite regions

How to understand the work done / energy-momentum flux in tidal
heating? (... and energetic concepts in a variety of other
applications?)



Contra the Eliminativists
I Utility of quasi-local energy (over spacetime regions, closed

2-surfaces) in place of local energy-momentum and
conservation principles

I Dependence on Background Structure

Need analog of “inertial structure,” to define work as deviation
from freely falling motion over some distance. Justification for
doing this in specific modeling contexts.

I Problems with quasi-local accounts
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Outline

1 Eliminativists
2 Going Quasi-Local
3 Challenges



Anybody who looks for a magic formula for “local gravita-
tional energy-momentum” is looking for the right answer
to the wrong question.

(MTW, 467)

It is perhaps ironic that energy conservation, a paradig-
matic physical concept arising initially from [Galileo] ...
should nevertheless have found no universally applicable
formulation with Einstein’s theory, incorporating the en-
ergy of gravitation itself.

(Penrose 1982, 52)
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Implication of Equivalence?
Common argument: “locally” can always transform away
gravitational energy, by going to a freely-falling frame.

(But what does this rule out? Can gravitational energy depend on
second derivatives of the metric, rather than just first derivatives?
See Curiel 2017.)
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Does Tab include gravitational energy-momentum?

Yes! ...
Consider spacetimes with
Rab = 0. Can represent
gravitational waves (etc.), yet
answer implies that gravitational
EM vanishes.

No! ...
Then the covariant conservation
law ∇aTab = 0 applies to
non-gravitational Tab;
gravitational EM sui generis,
non-fungible.

(See Curiel 2017, Dewar and Weatherall 2018; attributed to Geroch)
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Basic Challenge
No natural way of “adding up” energetic quantities at different
points in a curved spacetime. (For example: mass-energy is one
component of EM 4-vector, but generic spacetimes lack global
notion of parallelism that would support adding mass-energy for
extended body.)
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Exceptions: Killing Symmetry

Consider a current Ja = Tabξ
b with ξb unit timelike, then

∇aJa = ∇a(Tabξ
b) = (∇aTab)ξ

b + Tab∇(aξb) (5)

The first term vanishes (∇aTab = 0).

If ξa is a Killing field, the second term also vanishes. Then Ja is a
conserved current.
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Integral Conservation Law
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Figure 1: An observer in the three-dimensional spatial volume ⌃t follows a timelike worldline C with tangent four-
velocity vector ua, which is not necessarily parallel to the timelike vector field ua

⌃ orthogonal to⌃t. The one-parameter
family of spatial volumes, ⌃t, foliate the four-dimensional spacetime region,�V , whose timelike worldtube boundary,
�B, has spacelike unit normal vector field na.

where

E =
1

c2
uaubT

ab =
Energy

Volume
=

1

8⇡

�
E2 + B2

�
(e.g., electromagnetic energy density)

Pa = � 1

c2
ha

bucT
bc =

Momentum

Volume
=

1

4⇡c
✏abcE

bBc (e.g., Poynting vector over c2) (6)
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b
dT
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2
hab

�
E2 + B2

��
(e.g., Maxwell stress).

Here ha
b = ga

b+
1
c2

uaub is the projection operator into the vector space orthogonal to the worldlines of the congruence,
and ✏abc = 1

cu
d✏dabc is the corresponding volume form in this space. The last equality corresponds to the example

of electromagnetism, which will be used later when we compare our results with that in reference [8]. In this case,
Ea = 1

cF
abub and Ba = 1

2✏
abcFbc are the proper electric and magnetic fields seen by the observers with four-velocity

ua [9].
To get a momentum conservation law we set  a = �1

c�
a, where �a is orthogonal to (the worldlines of) the

congruence. We then arbitrarily choose a time function on�V , i.e., a foliation of�V by spacelike three-surfaces, ⌃t,
of constant time parameter, t (that coincide with ⌃i and ⌃f at times ti and tf ), and set ua = N�1(@/@t)a, where N
is the lapse function. We naturally extend the definition of ua

⌃ to all ⌃t surfaces (as opposed to on just ⌃i and ⌃f ) as

ua
⌃ = �(ua + V a), (7)

where V a is orthogonal to the congruence, and � = (1 � V 2/c2)�1/2 is a Lorentz factor. V a represents the three-
velocity of fiducial observers who are ‘at rest’ with respect to ⌃t (whose hypersurface-orthogonal four-velocity is
ua
⌃) as measured by our congruence of observers (whose four-velocity is ua). We will refer to these as the ua

⌃- and
ua-observers, respectively. Note that while ua

⌃ is hypersurface orthogonal, ua need not be, i.e., we are allowing for a

5

Observer moving along the curve C with velocity ua.

Orthogonal vectors: na to the boundary, uΣ
a to foliation

Σt . Figure from Epp et al. (2013)

∫
Σf−Σi

dΣ Tabu
a
Σξ

b =∫
∆B

dB Tabn
aξb −

∫
∆V

dV Tab∇(aξb)

The second term vanishes if
ξa is a Killing vector, and we
recover the familiar form of an
integral conservation law.
(Then choosing ξa at a point
fixes it throughout the
volume.)



Exceptions: Asymptotic Symmetry

Asymptotic
Infinities

I Null infinity:
BMS group,
positive mass
theorems

I Spacelike
infinity: ADM
mass
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Fig. 19.10 For an isolated system emitting gravitational waves, where it may be
assumed that the spacetime is asymptotically Xat, there is a precise measure of
total mass/energy–momentum and of its loss through gravitational radiation,
referred to as the Bondi–Sachs mass/energy conservation law. The relevant math-
ematical quantities are non-local and deWned at ‘null inWnity’ (a geometrical
notion which will be discussed in §27.12).

a clear-cut mathematical accounting of the mass/energy carried away
from such a system in the form of gravitational waves, and a conservation
law for energy–momentum was accordingly achieved;16 see Fig. 19.10.
This conservation law does not have the local character of that for
non-gravitational Welds, as manifested in the ‘conservation equation’
raTab ¼ 0, and it only applies in an exact way in the limit when the
system becomes completely spatially isolated from everything else.
Yet, there is something a little ‘miraculous’ about how things all Wt
together, including certain ‘positivity’ theorems that were later proved,
which tell us that the total mass of a system (including the ‘negative
gravitational potential energy contributions’ discussed above) cannot be
negative.17

There are general prescriptions for obtaining conservation laws for
systems of interacting Welds. These come from the Lagrangian approach,
which will be introduced in the next chapter. The Lagrangian approach is
very powerful, general, and beautiful, despite the fact that it does not (or,
at least, not directly) seem to give us everything that we need in the case of
gravitation. It, and the closely related Hamiltonian approach, both form

468

§19.8 CHAPTER 19

(Image from Penrose 2004, 468)
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It is an essential point of consistency, both in theory and
observation, that the ripples of empty space that constitute the
gravitational waves emitted by PSR 1913+ 16 [Hulse-Taylor double
neutron star] and other such systems indeed carry actual energy
away. Gravitational energy is a genuinely non-local quantity. This
does not imply that there is no mathematical description of
gravitational energy, however. Although I believe it is fair to say
that we do not yet have a complete understanding of gravitational
mass/energy, there is an important class of situations in which a
very complete answer can be given ... [Asymptotically flat, isolated
systems.]

(Penrose 2004, 467)
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Motivating Quasi-Local Definition
Gravitational energy for asymptotically flat systems: intrinsically
global definition. No straightforward connection with intuitive
picture of gravitational waves “carrying energy” through finite
regions.
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Eliminativist Position

There is no genuine energy-momentum conservation prin-
ciple in GTR. [...] What typically hides this conclusion from
view in these texts is the universal, almost desperate desire
to make it seem as though there is such a principle at the
heart of the theory.

(Hoefer 2000, p. 195)

(N.B: Hoefer focuses on pseudo-tensor approaches, and allows that quasi-local
definitions may someday put “gravitational stress-energy onto firmer
foundations.”)
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Current Philosophical Debate

I Eliminativists (Hoefer 2000; Duerr 2019a,b)

Response to “substantivalist” argument: gravitational waves
could knock down the rock of Gibraltar...

I Responses
- Background Dependent Structures (Lam 2010)
- Foundations (Curiel 2017)
- Functionalist (Read 2020)
- Non-unique gravitational energy (Pitts 2010, ...)
- Comparisons with Newtonian gravity (Dewar and Weatherall
2018, Duerr and Read 2019)

- Noether’s theorem; defense of pseudo-tensors and quasi-local
energy (de Haro 2021)
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Senses of Background Dependence
I Definitions of non-local gravitational energy (pseudo-tensors,

quasi-local) introduce background structure: not generally
applicable, against the spirit of GR, usually rejected as
“unphysical”...

I Main challenges:
- Need analog of an “inertial frame” to define gravitational
energy for extended bodies, ascriptions of energy-momentum
relative to this choice

- Lack of transformation properties to check consistency, and
justification for use in particular applications

- What are the invariant features of energy transmission via
gravitational interactions?
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Two Routes to Quasi-Local Quantities

Hamiltonian / Lagrangian
Formulation
Brown and York (1993): given
region S , τab conjugate to the
3-metric induced on the boundary
of S .

(See, in particular, de Haro 2021)

Geometrical
Quantities for isolated systems
defined in terms of: 2-surfaces “at
infinity,” introduce corresponding
localized versions; or start with
symmetric case and extend

(Szabados 2009, Lam 2010)
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Pointilisme regarding Physical Properties
“[T]he doctrine that the history of the world is fully described by all
the intrinsic properties of all the spacetime points and-or all the
intrinsic properties at all the various times of point-sized bits of
matter.”

Philosophical anti-Pointilisme: Butterfield (2005)

Technical: how to treat invariance of physical properties defined
over spacetime regions
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Hawking Energy (1968)

Expression for energy EH(S) enclosed by S (roughly):

EH(S) = A+ B

∫

S
ρρ′dS (6)

Measure of the “focusing” (ρ, ρ′ convergence of incoming,
outcoming null curves orthogonal to S) due to mass-energy,
parameters A,B set by limiting behavior.

Drawbacks of EH(S)

I Not monotonic for family of surfaces Sr , in general. Monotonicity proven
for some cases: e.g., Sr foliate outgoing null hypersurfaces, matter
sources satisfy dominant energy condition (Hawking 1968)

I Negative in Minkowski space for some choices of S (require convexivity
condition on S)
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Nowadays, the state of the art is typically postmodern: Al-
though there are several promising and useful suggestions,
we have not only no ultimate, generally accepted expression
for the energy-momentum ... but there is no consensus in
the relativity community even on the general questions ...
or on the list of criteria of reasonableness of such expres-
sions.

(Szabados 2009, 9)



Introduction Background Eliminativists Going Quasi-Local Concluding Remarks

Natural Requirements for E (S) (Szabados 2009)
I “Large sphere” behavior: recover results for isolated systems
I “Small sphere” behavior: behavior approaching a point, in

vacuum and non-vacuum cases
I Other limiting behaviors: weak field limit, “round sphere”

expression (for spherically symmetric spacetimes), marginally
trapped surfaces

I Apply to arbitrary closed, orientable 2-surfaces
I Relationship to Hamiltonian / Lagrangian formalism
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Conditions of Adequacy?

I Account of quasi-local energy applicable to all solutions?

... or restrict to subspace of solutions (physically relevant,
stability properties, etc. ...)
... for every element of chosen subspace there is an
appropriate definition? (Exploiting background structure?)

(See also Jaramillo et al. 2010, Lam 2010)
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Reference Frames and Conservation

I “Locally Asymptotic Reference Frames” in Tidal Heating
(Thorne and Hartle 1985)
Reference frame defined in buffer zone: source of external field
far enough away for gravity to be weak, perturbative treatment

I Proposal (McGrath, Epp, Mann) “Quasi-Local Rigid Frames”:
congruence of timelike worldlines, boundary of a finite spatial
volume
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Reference Frames and Quasi-Local Energy
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Figure 1: An observer in the three-dimensional spatial volume ⌃t follows a timelike worldline C with tangent four-
velocity vector ua, which is not necessarily parallel to the timelike vector field ua

⌃ orthogonal to⌃t. The one-parameter
family of spatial volumes, ⌃t, foliate the four-dimensional spacetime region,�V , whose timelike worldtube boundary,
�B, has spacelike unit normal vector field na.
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(e.g., Maxwell stress).

Here ha
b = ga

b+
1
c2

uaub is the projection operator into the vector space orthogonal to the worldlines of the congruence,
and ✏abc = 1

cu
d✏dabc is the corresponding volume form in this space. The last equality corresponds to the example

of electromagnetism, which will be used later when we compare our results with that in reference [8]. In this case,
Ea = 1

cF
abub and Ba = 1

2✏
abcFbc are the proper electric and magnetic fields seen by the observers with four-velocity

ua [9].
To get a momentum conservation law we set  a = �1

c�
a, where �a is orthogonal to (the worldlines of) the

congruence. We then arbitrarily choose a time function on�V , i.e., a foliation of�V by spacelike three-surfaces, ⌃t,
of constant time parameter, t (that coincide with ⌃i and ⌃f at times ti and tf ), and set ua = N�1(@/@t)a, where N
is the lapse function. We naturally extend the definition of ua

⌃ to all ⌃t surfaces (as opposed to on just ⌃i and ⌃f ) as

ua
⌃ = �(ua + V a), (7)

where V a is orthogonal to the congruence, and � = (1 � V 2/c2)�1/2 is a Lorentz factor. V a represents the three-
velocity of fiducial observers who are ‘at rest’ with respect to ⌃t (whose hypersurface-orthogonal four-velocity is
ua
⌃) as measured by our congruence of observers (whose four-velocity is ua). We will refer to these as the ua

⌃- and
ua-observers, respectively. Note that while ua

⌃ is hypersurface orthogonal, ua need not be, i.e., we are allowing for a

5

Observer moving along the curve C with velocity ua.

Orthogonal vectors: na to the boundary, uΣ
a to foliation

Σt . Figure from Epp et al. (2013)

I Proposed quasi-local
conservation law over
region V

I Integration restricted to
surface densities rather
than over volumes

I Decompose Brown-York
tensor τab into
components: energy,
momentum, and stress
(defined on the surface)

(see Epp, McGrath, Mann 2013; McGrath et al. 2012; Oltean et al. 2021)
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Observer moving along the curve C with velocity ua.

Orthogonal vectors: na to the boundary, uΣ
a to foliation

Σt . Figure from Epp et al. (2013)

I Roughly: “bulk” term
(Tab∇(aξb)) breaks into
“stress times strain” and
“momentum times
acceleration” terms

I “Quasi-local rigid frame”:
congruence of timelike
curves on the boundary,
with no expansion or
shear, so that “stress
times strain” vanishes

(see Epp, McGrath, Mann 2013; McGrath et al. 2012; Oltean et al. 2021)
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Implications

I Consider (generally) a reference frame accelerating with
respect to a background field. There will be a change in field
energy not reflected in flux through the boundary, due to
acceleration relative to existing momentum.

I In the context of general relativity, the presence of momen-
tum (matter or gravitational) flowing through the system
causes the observers’ local “radial” vector to precess rela-
tive to inertial gyroscopes (i.e., a frame dragging effect),
and the vector cross product between this precession rate
(the gravitational analogue of a magnetic field) and the
observers’ acceleration (the gravitational analogue of an
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Eliminativism Revisited

1 Failure of Uniqueness
I Brown-York (or some-other candidate) as preferred definition

of quasi-local energy
I Criteria of adequacy to choose among the various proposals

2 Background Dependence
I Expect dependence on specification of reference frames to

define energetic properties
I Current status: ambiguous transformation properties,

invariants
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Tidal Heating Revisited

Invariance of Tidal Work
I Purdue (1999), Favata (2001): Ambiguity in localization of

gravitational energy (exhibited by pseudo-tensorial
calculations), ascribed to energy of the field or the matter
source.

I Booth and Creighton (2000): Treatment of tidal heating using
Brown-York quasi-local energy, recovers same expression.

I All calculations yield same result for tidal work dW
dt , but no

way to directly “transform” from one expression for
gravitational energy to another
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